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1.1: Introduction: 
          In every day life we come a cross numerous things that move. 

These motions are of two types; 

(I) The motion in which the body moves about a mean position i.e. a 

fixed point. 

(II) The motion in which the body moves from one place to the other with 

respect of time. 

 The first type of motion is called oscillatory motion (example; 

oscillating pendulum, vibration of a stretched string , movement of 

water in a cup , vibration of electron , movement of light in a laser 

beam etc.) 

 A moving train, flying aero plane, moving ball etc. correspond to 

the second type of motion. 

  Sometimes both the types of motion are exhibited in the same 

phenomenon depending on our point of view. 
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1.2: Simple harmonic motion: 

 Let P be a particle moving on the circumference of a circle of radius a with 

a uniform velocity v 

 Let v = a  

          a is radius 

           is angular velocity 
(The circle along which P moves is called the circle of reference.) 

 

 

 (As the particle P moves round the circle continuously with 

uniform velocity, the foot of the Perpendicular M, vibrates along 

 the diameter YY  . If the motion of P is uniform, then the motion of M is periodic (i.e., it takes 

the same time to vibrate once between the points y and y  .)) 

 
At any instant the distance of M from the center O of the circle is called the displacement. 

  If the particle moved from X to p in the time t, then  

 pox = MPO =  = t 

From the  ∆MPO 

a

OM
wt  sinsin                                               wtayOM sin  

 OM is called the displacement of the vibration particle. 

 

* (The displacement of a vibrating particle at any instant can be defined as its distance from the 

mean position of rest.) 

 

Amplitude; the maximum displacements of vibrating particle is called its amplitude. 

 

wtay sinntDisplaceme   

 

* The rate of change of displacement is called the velocity of the vibrating particle. 

wtaw
dt

dy
Velocity cos  

 

* The rate of change of velocity is called its acceleration. 

Acceleration = rate of change of velocity 

ywwtaw
dt

yd

dt

dy

dt

d 22

2

2

sin)(on Accelerati   
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Angle Position of the vibrating 

particle 

Displacement Velocity Acceleration 

wt M wtay sin  
wtaw

dt

dy
cos  wtaw

dt

yd
sin2

2

2

  

0 O 0 +aw 0 

2


 

Y +a 0 -aw2 

  O 0 -aw 0 

2

3
 

Y   -a 0 +aw2 

2  O 0 +aw 0 

 

Oscillatory behavior;  
The process repeats itself periodically. Thus the system Oscillates.  

In this process, Y, dy/dt, d
2
y/dt

2
 Continuously change with respect to time. 

 

[Thus, the velocity of the vibrating particle is maximum at the mean position of rest and zero at 

the maximum position of vibration].  

 

The acceleration of the vibrating particle is zero at the mean position of rest and maximum at the 

maximum position of vibration. The acceleration is always directed towards the mean position of 

rest and is directly proportional to the displacement of the vibrating particle.] 

 

(This type of motion where the acceleration is directed towards a fixed point (the mean 

position of rest) and is proportional to the displacement of the vibrating particle is called 

simple harmonic motion)  

 

ntdisplacemewyw
dt

y
 22

2

2d
 on Accelerati  

 

Numerically 
ntDisplaceme

onAccelerati
w 2

 

 

TntDisplaceme

onAccelerati
nw




2
2    

    

 
onAccelerati

ntDisplaceme
T 2 K2         The time period of a particle vibrating simple harmonically 

 
Where K is the displacement per unit acceleration 
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If the particle P revolves round the circle, n times per second, then the angular velocity w is 

given by;  

T
nw




2
2   

 


T

n
1

  Where T is the time period 

 

T

t
antay  2sin2sin   

 

On the other hand, if the time is counted 

From the instant P is at S (sox=) 

Then the displacement; 

 

)2sin()sin(  
T

t
awtay  

 

 

 

 

 

 

 

 

If the time is counted from the instant P is at  S   then; 

)2sin()sin(  
T

t
awtay  

 

 

 

Phase of the vibrating particle: 
 

1- The phase of a vibrating particle is defined as the ratio of the displacement of the 

vibrating article at any instant to the amplitude of the vibrating particle (y/a). 

2- It is also defined as the fraction of the time interval that has lapsed since the particle 

crossed mean position of rest in the position direction. 

3- It is also equal to the angle by the radius vector since the vibrating particle last crossed its 

mean position of rest e.g., in the above equations wt, (wt+) or (wt-) are called phase 

angle. 

 
Thus  is called the epoch in the above expressions. 
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1.3: Differential Equation of SHM; 
 For a particle vibrating simple harmonically, the general equation of displacement is, 

)1()sin(  wtay   

Where y is displacement, is amplitude and  is epoch of the vibrating particle. 

 

Differential Equation (1) with reseat to time    

)2()cos(  wtwa
dt

dy
 

dt

dy
 is velocity of the vibrating particle. 

Differential Equation (2) with reseat to time    

)3()sin(2

2

2

 wtwa
dt

yd
 

But )sin(  wtay  

yw
dt

yd 2

2

2

  

)3(02

2

2

 yw
dt

yd
 Differential Equation of Simple Harmonic Motion 

2

2

dt

yd
represents the acceleration of the particle. 

 

Equation (3) represents the Differential Equation of Simple Harmonic Motion. 

 

It also shows that in any phenomenon where an equation similar to equation (3) is obtained, the 

body executes simple harmonic motion.  

 

The general solution of equation (3) is  

)sin(  wtay  

 

* Also the time period of a vibrating particle can be calculated from equation (3). 

 

Numerically; 
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dtyd

ntDisplaceme

onAccelerati
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1.4: Graphical Representation of SHM; 
 Let P a particle moving on the circumference of a circular of radius a. The foot of the 

perpendicular vibrates on the diameter YY  . 

)2sin()sin(
T

t
awtay   

The displacement graph is a sine curve represented by ABCD 

 

 

 

 

 

 

 

 

 

The motion of the particle M is SH. 

 

The velocity of a particle moving with SHM is 

)cos(wtaw
dt

dy
v   

 

 

 

 

 

                         

 

                            The velocity – time graph is shown in figure (*) It is cosine curve. 

 

 

The acceleration of a particle moving with SHM is  

)sin(2

2

2

wtaw
dt

yd
  

                          

 

 

 

 

 

 

 

The acceleration – time graph is shown in figure (*) It is negative sine curve. 
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1.5: Average Kinetic Energy of a Vibrating Particle:- 
 The displacement of a vibrating particle is given by; 

)sin(  wtay  

)cos(  wtwa
dt

dy
v  

If m is the mass of the vibrating particle, the kinetic energy at any instant 

2

2

1
. mvEK   

)(cos
2

1
. 222  wtwmaEK  

 

The average kinetic energy of the particle in one complete vibration  

 

dtwtwmadtEK
TT

 
0

222

0

)(cos
2

1

T

1
).(

T

1
K.E Average   

dtwt
wma

T

 
0

2
22

)(cos2
4T

1
K.E Average   

dtwt
wma

T

 
0

22

)(2cos1(
4T

1
K.E Average   














  

T T

dtwtdt
wma

0 0

22

)(2cos
4T

1
K.E Average   

But 0)(2cos
0

 dtwt


  

)0(
4T

1
K.E Average

22

 T
wma

 

But w=2n 

4

4
K.E Average

222 nma 
  

222K.E Average nma  

Where m is the mass of the vibrating particle 

            a is the amplitude of vibrating  

            n is the frequency of vibrating  

 

Also, the average K.E of vibrating particle is directly proportional to the square of the amplitude. 

Average K.E  a
2
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1.6: Total Energy of Vibrating Particle; 

)sin(  wtay          →      
a

y
wt  )sin(      →  

2

2
2 )(sin

a

y
wt     ………(1) 

1)(cos)(sin 22   wtwt    →   )(cos1)(sin 22   wtwt    ………(2) 

From eq  1& 2  :     
2

2
2 )(cos1

a

y
wt             →         

2

2
2 1)(cos

a

y
wt    

2

22

2

2

1)cos(
a

ya

a

y
wt


              →     

a

ya
wt

22

)cos(


       ………..(3) 

From equation       )cos(  wtwa
dt

dy
v  

22
22

)cos( yaw
a

ya
awwtwa

dt

dy
v 


   

 

22 yaw
dt

dy
v       ………………….(4) 

The K.E of the particle at the instant the displacement is y, 

)(
2

1

2

1
. 2222 yamwmvEK          ………………...(5) 

Potential energy of the vibrating particle is the amount of work done in overcoming the force 

through a distance y. 

Acceleration = - w
2
y 

Force = mass x acceleration = - m w
2
y 

(The –Ve sign shows that the direction of the acceleration and force are opposite to the direction 

of motion of the vibrating particle) 

22
2

2

0

2

0
2

1

2
. ymw

y
mwdyymwdyFEP

yy

           …………..(6) 

Total energy of the particle at the instant the displacement is y; 

22222

2

1
)(

2

1
.. ymwyamwEPEKETotal   

222222

2

1

2

1

2

1
ymwymwamwETotal   

22

2

1
amwETotal                              But w=2n                               

222 )4(
2

1
anmETotal   

2222 amnETotal           ……………..(7) 

Average K.E of the vibrating particle = 
222 amn  

Average P.E of the vibrating particle = 
222 amn  

Total energy at any instant is constant. 
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Example:  
  For a particle vibrating simple harmonically, the displacement is 12cm at the 

instant the velocity is 5cm/sec and the displacement is 5cm at the instant the velocity is 12 

cm/sec. Calculate;  

(I) Amplitude (II) Frequency and (III) Time Periodic  

 

The velocity of a particle executing SHM 

22 yaw
dt

dy
v   

In the first case; 

2

1
2

1 yawv       

v1 = 5 cm/s, y1 = 12 cm 

)1.......(1445 2  aw  

 

In the second case; 

2

2
2

2 yawv       

v1 = 12 cm/s, y1 = 5 cm 

  

)2.......(2512 2  aw  

 

Dividing (2) by (1) and squaring; 

 

..144

25

5

12

2

2






aw

aw
                                 

144

25

25

144
2

2






a

a
  

)25(25)144(144 22  aa                     252525144144144 22  aa  

6252520736144 22  aa                    6252073625144 22  aa   

20111119 2 a                         169
119

201112 a                     cma 13  

Substituting the value of (a=13cm) in eq.(1); 

www 5251441695                                            sec/1radianw   

 

The frequency; 

Hertz
w

n
 2

1

2
  

 

Time period; 

onds
n

T sec2
1

  
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1.7: Energy of Vibration: 
 

Work done = Force displacement  

 

)sin(  wtay ……………(1) 

Let the periodic force be; 

 

F=Fo sinwt           ………………………..(2) 

 

dw=Fdy 

 

The Total Work done; 

 dyFw                      Since )()cos()sin( wtdwtadywtay    

   )()cos(sin wtdwtawtFw o   

 

Work done per cycle of motion; 

 



2

0

)()cos(sin wtdwtwtaFw o  

But  sinsincoscos)cos( wtwtwt   

 

Therefore;   



2

0

)(sinsincoscossin wtdwtwtwtaFw o  

 

 
 


2

0

2

0

2 )(sinsin)(cossincos wtdwtaFwtwtdwtaFw oo  

 

0

)

2

4

2sin

2
(sin

0

)

2

2

2sin
(cos








wtwt

aF
wt

aFw oo   

 

)(sin oaFw   

Or      

 sinoaFw   
 

 

 

 

 




2

0

2sin
2

1
cossin d  

 

 





2

0

2 )
4

2sin

2
(sin d
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1.8: Oscillation with One Degree of Freedom; 

 

 

 

 

 

 

 

                                                 
In the case of simple pendulum            Loaded spring                                     LC circuit  

These oscillations take place about the mean position. All these systems have one degree of 

freedom. 

 

For oscillatory with one degree of freedom, the displacement the "Moving particles" depends 

upon the SHM 

)sin(  wtay  

 

An oscillatory system will continue to oscillate for an infinite time according to the equation  

)sin(  wtay . 

 
Damped Oscillations; In actual particle the oscillatory system experiences fractional or resistive 

forces. Due to these reasons the oscillations get damped. 

 

In the case of pendulum, the amplitude decreases due to the resistance offered by air. 

 

In the case of LC circuit, the resistance of the circuit produces damped. 
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is non-linear for it contains terms of ., 53 etc  

1.9: Linearly and Superposition Principles: 
 The differential of SHM is given by; 

02

2

2

 yw
dt

yd
  

In this equation; 

2

2

dt

yd
is proportional to –y 

 

The time periods for a simple pendulum 

     Mass and spring 

     Katter's pendulum 

     LC circuit and etc…. 

are derived on the basis of this equation. 

In all these case, the return force per unit displacement depends upon the term y.  

The equation does not contain the terms y
2
,y

3
 etc. 

The differential equations which do not contain the higher powers of y, such as y
2
,y

3
 ….etc. 

terms are called Linear equations. 

 

Further this equation does not contain any term independent of y. therefore; it is called a linear 

homogeneous equation. 

If, in a particular equation higher power of y (i.e. y
2
,y

3
 …..etc. terms are present, the equation is 

said to be non-linear. 

Moreover, if it contains terms independent of y also, it is said to be non-homogeneous and non-

linear equation. 

 

In general, it is not easy to solve non-linear equations. 

 

The equation for a simple pendulum is 

sin
2

2

Mg
dt

yd
M   

It is assumed that amplitude is small and sin=             but,        ........
!5!3

sin
53




  

Mg
dt

yd
M 

2

2

      ……………..(1)            is  linear 

 

Taking this value of sin 

 














 ........

!5!3

53

2

2 
Mg

dt

yd
M     …………….(2) 
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Linear homogeneous equations: 
* One of the important properties of linear homogeneous equations is that the sum of any two 

solutions is a solution by itself. This property is not true in the case of non-linear equation. 

Consider the differential equation; 

)3(.......4322

2

2

 etcCyByAyyw
dt

yd
 

If the value of the constant A,B,C….etc in eq.(3) are Zero or they can be taken sufficiently near 

to Zero, then equation (3) becomes; 

)4(2

2

2

 yw
dt

yd
 This equation is linear & homogeneous 

If A,B,C….etc are not Zero, then equation is non-linear. 

Suppose, y1 is the first solution of eq.(3) at some instant of time t1  

Suppose, y2 is the second solution of eq.(3) at some instant of time t2  

(Differential displacement & velocity) 

 )5(.......
4

1

3

1

2

11
2

2

1

1
2

 etcCyByAyyw
dt

yd
 

 )6(.......
4

2

3

2

2

22
2

2

2

2
2

 etcCyByAyyw
dt

yd
and  

When the two instant are superimposed on each other, the resultant displacement is y. 

Y = y1 + y2 
 The equation for resultant displacement; 

)7(....)()()()()( 4
21

3
21

2
2121

2
212

2

2

2

 yyCyyByyAyywyy
dt

d

dt

yd

Adding equations (5) and (6); 

)8(....)()()()(
4

2

4

1

3

2

3

1

2

2

2

121
2

2

2

2
2

2

1

1
2

 yyCyyByyAyyw
dt

yd

dt

yd

The equations (7) and (8) are identical, only if  

)9()(
2

2
2

2

1
2

212

2


dt

yd

dt

yd
yy

dt

d   →     )10()( 2
2

1
2

21
2  ywywyyw  

)11()()( 2
21

2

2

2

1  yyAyyA    →     )12()()( 3
21

3

2

3

1  yyByyB  

 

)13()()( 4
21

4

2

4

1  yyCyyC  

Equations (9) and (10) are true, But equations (11),(12) and (13) are true only, A=0,B=0, and 

C=0. 

When A,B,C,….etc are Zero, the equation become linear. Hence superposition principle is true 

only in the case of homogeneous linear equation. 

 Also the sum of any two solutions is also a solution of the homogenous linear equation. 

 All harmonic oscillators given in equation (9) and (10) obey superposition principle. 



Chapter One Harmonic Oscillators Sound & Wave Motion 

Lec. Dr. Edrees Harki Page 14 
 

1.11: Simple Pendulum: 
 A Simple Pendulum of a light string supporting a small sphere and fixed firmly at its 

upper end, an ideal Simple Pendulum should consist of a heavy particle suspended by means of a 

weight less, inextensible, flexible string from a rigid support. 

Let pendulum be displaced from its mean position O  

and allowed to oscillate. 

Suppose at any instant of time t, it is at A. 

The force acting upon the polo vertically downward=Mg 

Resolve Mg into rectangular components: 

1. Force along the string =Mg Cos  

2. Force perpendicular to the string = Mg Sin 

Let the tension in the string be T. The component Mg Cos  

balances the tension T. 

Mg Cos = T   …………………(1) 

Thus the only force acting on the oscillating particle is –Mg Sin  

F= -Mg Sin   ……………..…(2) 

 (-Ve sign shows that the acceleration is directed towards the mean position). 

According to Taylor's series of expansion;                     ..........
!5!3

53




Sin   

For small angular displacement;              Sin  

 Tangential force,  F = -Mg      ………………..(3) 

The linear displacement, y=ℓ  
dt

d
l

dt

dy 
          →               Acceleration, 

2

2

2

2

dt

d
l

dt

yd 
   

 Force, 
2

2

dt

d
MlamF


     …………………(4)            From Newton's second law.         

From eq 3&4  ;                 


Mg
dt

d
Ml 

2

2

             →                    


l

g

dt

d


2

2

 

  )5(0
2

2

 


l

g

dt

d
          The eq. is similar to the eq. of SHM     )6(02

2

2

 w
dt

yd
 

From equations (5) and (6); 

l

g
w 2                                            

l

g
w      

Time period, 
w

T
2

                                                    
g

l
T 2  

In case of a simple pendulum 

If the size of the bob is large, a correction to be applied 

g

lrl

t

/)
5

2
(

2

2

                               Here lrl /)
5

2
( 2  represent the equivalent Length 

of a simple pendulum. 
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1.12: Simple Harmonic Oscillation of a Mass between two springs:- 

 

 Consider two spring S1 and S2 each having a length l in the relaxed position. 

 

Mass M is placed midway between the two springs on a frictionless surface. 

 

 One end of the spring S1 is attached to a rigid wall A and the other end is attached to the 

Mass M. Similarly one end of the spring S2 is attached to a rigid wall at B and the other end is 

connected to the mass M. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here AC=BC=L 

At C the mass is equally pulled by both the springs and it is the equilibrium position. 

When the mass M is displaced from its equilibrium position and left, it excites SHO.  

 

Let, at any instant, D be the displaced position of the mass M. 

Here AD=x, and BD=(2L-x) 

Let the tension per unit displacement in the spring be K. 

 The displacement of the spring of S1 is (x-L) and it extents a  

force =K(x-L) in the direction DA. 

 * The displacement of the spring of S2 is (2L-x-L) and it extents a  

force =K(2L-x-L) in the direction DB. 

 

The resultant force on the mass M= K(2L-x-L)- K(x-L) in the direction DB 

       = 2Lk-xk-Lk-kx+kL=2Lk-2xk=2k(L-x) 

       = -2k (x-L) in the direction DB 

According to Newton's second law of motion; 

(1)------- L)-(x-2k 
2

2


dt

xd
MF  

 L)-(x 
2k

-
2

2

Mdt

xd
  

L
m

LA

C

B

x

m BA

C D
(2L-x)

m
ℓ ℓA B

CS
1

S
2

L
m

LA

C

B

x

m BA

C D
(2L-x)

m
ℓ ℓA B

CS
1

S
2

L
m

LA

C

B
L

mm
LA

C

B

x

m BA

C D
(2L-x)x

mm BA

C D
(2L-x)

m
ℓ ℓA B

CS
1

S
2

mm
ℓ ℓA B

CS
1

S
2
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(2)-------0 L)-(x 
2k

2

2


Mdt

xd
or  

Taking the displacement from the mean position; 

x-L=y  x=y+L 

Differentiating twice, 
dt

dy

dt

dx
   

2

2

2

2

dt

yd

dt

xd
  

Substituting these value in eq.(2); 

   

(3)-------0y 
M

2k
 

2

2


dt

yd
 

This equation is similar to the equation of SHM; 

 

(4)-------0y  w2

2

2


dt

yd
 

From eqs(3) and (4); 

M

2k
 w2   

M

2k
 w   

Time Period, )5(
2

2
2


k

M

w
T 


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