Chapter One- Part (II) Vector Analysis and Coordinate Systems

1-1: Introduction:
The use of vectors and vector analysis can greatly simplify the mathematics used in expressing and manipulating the laws and theorems of electric and magnetic fields.

1-2: Scalars and Vectors:
Scalar is a quantity that has only magnitude, such as: time, distance, temperature, entropy, energy, mass, electric potential

The vector is a quantity that has both magnitude and direction, such as: velocity, force, displacement, electric and magnetic field intensity

The vector \vec{A} is denoted in Cartesian coordinate as:

$$
\begin{aligned}
& \vec{A}=A_{x} \hat{a}_{x}+A_{y} \hat{a}_{y}+A_{z} \hat{a}_{z} \text { or } \vec{A}=A \hat{a}_{a} \\
& \text { where, } \hat{a}_{a} \text { is aunit vector }
\end{aligned}
$$

1-3: Unit Vectors:

The unit vector of \vec{A} is defined as a vector whose magnitude is unity and its direction is along \vec{A}, that is:

$$
\begin{aligned}
& \hat{a}_{a}=\frac{\vec{A}}{|A|} \\
& \vec{A}=A_{x} \hat{a}_{x}+A_{y} \hat{a}_{y}+A_{z} \hat{a}_{z} \\
& |A|=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}
\end{aligned}
$$

Where, A_{x}, A_{y} and A_{z} are component of \vec{A} in the x, y and z direction respectively.

1-4: Equality of Two Vectors:
The vectors \vec{A} and \vec{B} are said to be equal if they have equal magnitudes and identical unit vectors. Thus, if:

$$
\begin{array}{llll}
\vec{A}=A_{x} \hat{a}_{x}+A_{y} \hat{a}_{y}+A_{z} \hat{a}_{z} & \text { or } & \vec{A}=A \hat{a}_{a} \\
\vec{B}=B_{x} \hat{a}_{x}+B_{y} \hat{a}_{y}+B_{z} \hat{a}_{z} & \text { or } & \vec{B}=B \hat{a}_{b}
\end{array}
$$

Then $\vec{A}=\vec{B}$ if and only if $|A|=|B|$ and $\hat{a}_{a}=\hat{a}_{b}$

1. When two parallel vectors have the same magnitude and pointing to the same direction are equal.
2. but they are identical only if the lie on top of one another

1-5: Vector addition and subtraction:
Two vectors \vec{A} and \vec{B} can be added together to give another vector \vec{C} that is:
$\vec{C}=\vec{A}+\vec{B}$
$\vec{C}=\left(A_{x}+B_{x}\right) \hat{a}_{x}+\left(A_{y}+B_{y}\right) \hat{a}_{y}+\left(A_{z}+B_{z}\right) \hat{a}_{z}$
$\vec{C}=C_{x} \hat{a}_{x}+C_{y} \hat{a}_{y}+C_{z} \hat{a}_{z}$
And vector subtraction is similarly carried out as:

$$
\begin{aligned}
& \vec{D}=\vec{A}-\vec{B} \Rightarrow \vec{D}=\left(A_{x}-B_{x}\right) \hat{a}_{x}+\left(A_{y}-B_{y}\right) \hat{a}_{y}+\left(A_{z}-B_{z}\right) \hat{a}_{z} \\
& \vec{D}=D_{x} \hat{a}_{x}+D_{y} \hat{a}_{y}+D_{z} \hat{a}_{z}
\end{aligned}
$$

(a) Parallelogram rule

(b) Head-to-tail rule

N	Law	Addition	Multiplicati on
1	Commutative	$\vec{A}+\vec{B}=\vec{B}+\vec{A}$	$k \vec{A}=\vec{A} k$
2	Associative	$\vec{A}+(\vec{B}+\vec{C})=(\vec{A}+\vec{B})+\vec{C}$	$k(l \vec{A})=l(k \vec{A})$
3	Distributive	$k(\vec{A}+\vec{B})=k \vec{A}+k \vec{B}$	----------

1-6: Position and Distance Vector:

The position vector \vec{R}_{p} or radius vector of point $P(x, y, z)$ is defined as the directed distance from the origin $O(0,0,0)$ to point $P(x, y, z)$ as: $\vec{R}_{p}=\overline{O P}=x \hat{a}_{x}+y \hat{a}_{y}+z \hat{a}_{z}$

The distance vector is the displacement from one point to another, such as, $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ to $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ and is represented mathematically as:

$$
\vec{R}_{12}=\overline{P_{1} P_{2}}=\left(x_{2}-x_{1}\right) \hat{a}_{x}+\left(y_{2}-y_{1}\right) \hat{a}_{y}+\left(z_{2}-z_{1}\right) \hat{a}_{z}
$$

Therefore, the position vector is a special case of displacement vector.

Example(1): Given points $P(1,-3,5), Q(2,4,6)$ and $R(0,3,8)$ then find the following:
(a). the position vectors of P and R
(b). the distance vector $\overline{\mathrm{F}}_{\text {or }}$
(c). the distance between Q and R

Solution:
(a). $\overline{O P}=(1-0) \hat{a}_{x}+(-3-0) \hat{a}_{y}+(5-0) \hat{a}_{z}=\hat{a}_{x}+-3 \hat{a}_{y}+5 \hat{a}_{z}$ $\overline{O R}=(0-0) \hat{a}_{x}+(3-0) \hat{a}_{y}+(8-0) \hat{a}_{z}=3 \hat{a}_{y}+8 \hat{a}_{z}$
(b). $\overrightarrow{\mathbf{r}}_{Q P}=(1-2) \hat{a}_{x}+(-3-4) \hat{a}_{y}+(5-6) \hat{a}_{z}=-\hat{a}_{x}-7 \hat{a}_{y}-\hat{a}_{z}$
(c). $|\overline{Q R}|=\sqrt{(0-2)^{2}+(3-4)^{2}+(8-6)^{2}}=\sqrt{4+1+4}=3$ unit

1-7: Vector Multiplication:
Three types of products can occur in vector calculus. These are, simple, scalar(or dot) and vector(or cross) products:

1-7-1: Simple Product:
Multiplication of a vector by a scalar quantity is called a simple product and is represented mathematically as: $\widehat{\vec{A}=A \hat{a}_{a}}$
$k \vec{A}=k A \hat{a}_{a}=\vec{B}$
$\vec{B}=k A_{x} \hat{a}_{x}+k A_{y} \hat{a}_{y}+k A_{z} \hat{a}_{z}$
$\vec{B}=B_{x} \hat{a}_{x}+B_{y} \hat{a}_{y}+B_{z} \hat{a}_{z}$
\vec{B} is in the same direction of \vec{A} Such as $\vec{F}_{e}=Q \vec{E}$
1-7-2: Scalar Product:
The scalar or dot product of two vectors yields a scalar quantity and is denoted by: $\vec{A} \cdot \vec{B}=|A||B| \cos \theta_{A B}$

$$
W=\int \vec{F} \cdot \overline{d l}
$$

$$
\begin{aligned}
& \vec{A} \cdot(\vec{B}+\vec{C})=\vec{A} \cdot \vec{B}+\vec{A} \cdot \vec{C} \\
& \vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}
\end{aligned}
$$

And obey the following algebraic relation: $\vec{A} \cdot \vec{A}=|A|^{2}=A^{2}=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}$

$$
\begin{aligned}
& \hat{a}_{x} \cdot \hat{a}_{x}=\hat{a}_{y} \cdot \hat{a}_{y}=\hat{a}_{z} \cdot \hat{a}_{z}=1 \quad \theta_{A B}=0 \\
& \hat{a}_{x} \cdot \hat{a}_{y}=\hat{a}_{y} \cdot \hat{a}_{z}=\hat{a}_{z} \cdot \hat{a}_{x}=0 \quad \theta_{A B}=90
\end{aligned}
$$ as:

$$
A_{B}=|A| \cos \theta=\frac{\vec{A} \cdot \vec{B}}{|B|}=\vec{A} \cdot \hat{a}_{B}
$$

 and the vector component of \vec{A} along \vec{B} is represented mathematically as:

$$
\vec{A}_{B}=|A| \cos \theta \hat{a}_{B}=\frac{\vec{A} \cdot \vec{B}}{|B|} \hat{a}_{B}=\left(\vec{A} \cdot \hat{a}_{B}\right) \hat{a}_{B}
$$

While the normal component of \vec{A} on \vec{B} can be determined as: $\vec{A}_{N B}=\vec{A}-\vec{A}_{B}$ In addition the scalar projection of vector \vec{A} onto z-axis is given by:

$$
A_{z}=\frac{\hat{a}_{z} \cdot \vec{A}}{\left|\hat{a}_{z}\right|}=\hat{a}_{z} \cdot \vec{A}
$$

1-7-3: Vector Product:

The vector or cross product of two vectors such as

 \vec{A} and $\vec{B} \quad$ yields another vector which perpendicular to both \vec{A} and \vec{B} and is pronounced \vec{A} cross \vec{B} and is denoted by:$$
\vec{A} \times \vec{B}=|A||B| \sin \theta=\vec{C}=\left|\begin{array}{ccc}
\hat{a}_{x} & \hat{a}_{y} & \hat{a}_{z} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{a}_{x}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \hat{a}_{y}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{a}_{z}
$$

Where \vec{C} is perpendicular to both \vec{A} and \vec{B}. The vector products obey the following algebraic relation:

$$
\begin{aligned}
& \vec{A} \times \vec{B}=-\vec{B} \times \vec{A} \\
& \vec{A} \times(\vec{B} \times \vec{C}) \neq(\vec{A} \times \vec{B}) \times \vec{C} \\
& \vec{A} \times \vec{A}=z e r o \\
& \vec{A} \times(\vec{B} \pm \vec{C})=\vec{A} \times \vec{B} \pm \vec{A} \times \vec{C} \\
& \hat{a}_{x} \times \hat{a}_{x}=\hat{a}_{y} \times \hat{a}_{y}=\hat{a}_{z} \times \hat{a}_{z}=z e r o \\
& \hat{a}_{x} \times \hat{a}_{y}=\hat{a}_{z} \quad \hat{a}_{y} \times \hat{a}_{z}=\hat{a}_{x} \quad \hat{a}_{z} \times \hat{a}_{x}=\hat{a}_{y} \\
& \hat{a}_{y} \times \hat{a}_{x}=-\hat{a}_{z} \quad \hat{a}_{z} \times \hat{a}_{y}=-\hat{a}_{x} \quad \hat{a}_{x} \times \hat{a}_{z}=-\hat{a}_{y}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{\tau}=\vec{F} \times \vec{r} \\
& \vec{F}=q \vec{v} \times \vec{B}
\end{aligned}
$$

The magnitude of $\vec{A} \times \vec{B}$ is the area of the parallelogram formed by \vec{A} and \vec{B} as shown in the figure. Therefore, the area of triangular formed by \vec{A} and \vec{B} is. $\left|\frac{1}{2} \overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}\right|$

Example(2): Given vectors $\overrightarrow{\mathbf{A}}=\hat{a}_{x}+3 \hat{a}_{z} \quad$ and $\overrightarrow{\mathbf{B}}=5 \hat{a}_{x}+2 \hat{a}_{y}-6 \hat{a}_{z} \quad$, then determine the following:
(a). $|\mathbf{A}+\mathbf{B}|$
(c). the component of
A along \hat{a}_{y}
(b). $3 \overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}$
(d). the unit vector parallel to

$$
3 \overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}
$$

Solution:
(a). $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\left(\hat{a}_{x}+3 \hat{a}_{z}\right)+\left(5 \hat{a}_{x}+2 \hat{a}_{y}-6 \hat{a}_{z}\right)=6 \hat{a}_{x}+2 \hat{a}_{y}-3 \hat{a}_{z}$

$$
|\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}|=\sqrt{36+4+9}=7 \text { unit }
$$

(b). $3 \overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}=\left(3 \hat{a}_{x}+9 \hat{a}_{z}\right)-\left(5 \hat{a}_{x}+2 \hat{a}_{y}-6 \hat{a}_{z}\right)=-2 \hat{a}_{x}-2 \hat{a}_{y}+15 \hat{a}_{z}$
(c). the scalar component of \mathbf{A} along \hat{a}_{y} is given by:

$$
A_{y}=\vec{A} \cdot \hat{a}_{y}=\frac{\vec{A} \cdot \hat{a}_{y}}{\left|\hat{a}_{y}\right|}=\frac{\left(\hat{a}_{x}+3 \hat{a}_{z}\right) \cdot \hat{a}_{y}}{\left|\hat{a}_{y}\right|}=\frac{0}{1}=0
$$

$$
\text { The vector component of } \mathbf{A} \text { along } \hat{a}_{y} \text { is given by: } \vec{A}_{y}=\left(\vec{A} \cdot \hat{a}_{y}\right) \hat{a}_{y}=\frac{\vec{A} \cdot \hat{a}_{y}}{\left|\hat{a}_{y}\right|} \hat{a}_{y}=(0) \hat{a}_{y}=0
$$ (d). $3 \overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\left(3 \hat{a}_{x}+9 \hat{a}_{z}\right)+\left(5 \hat{a}_{x}+2 \hat{a}_{y}-6 \hat{a}_{z}\right)=8 \hat{a}_{x}+2 \hat{a}_{y}+3 \hat{a}_{z}$, then the unit vector parallel to

this vector is calculated as:

$$
\hat{a}_{3 \overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}}=\frac{3 \overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}}{|3 \overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}|}=\frac{8 \hat{a}_{x}+2 \hat{a}_{y}+3 \hat{a}_{z}}{\sqrt{64+4+9}}=\frac{8 \hat{a}_{x}+2 \hat{a}_{y}+3 \hat{a}_{z}}{\sqrt{77}}
$$

Example(3): Derive the cosine formula $c^{2}=a^{2}+b^{2}+2 a b \cos \theta$ and the sine formula $\frac{\sin a}{a}=\frac{\sin b}{b}=\frac{\sin c}{c}$ using dot and cross product respectively.

Cosine formula:

$$
\begin{aligned}
& \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}} \\
& \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{c}}=(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})=\mathbf{a}^{2}+\mathbf{b}^{2}+2 \mathbf{a} \cdot \mathbf{b} \\
& \mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}+2 \mathbf{a b} \cos \vartheta \quad \Rightarrow \mathbf{c}=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}+2 \mathbf{a b} \cos \vartheta}
\end{aligned}
$$

Sine formula: $\begin{aligned}\left|\frac{1}{2} \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}\right|=\left|\frac{1}{2} \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}\right|=\left|\frac{1}{2} \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}\right| \\ \therefore \frac{1}{2} \mathbf{a} \mathbf{b} \sin \mathbf{c}=\frac{1}{2} \mathbf{b} \mathbf{c} \sin \mathbf{a}=\frac{1}{2} \mathbf{c} \mathbf{a} \sin \mathbf{b}\end{aligned}$

dividing the above equation by ($\mathbf{a} \mathbf{b} \mathbf{c}$) we get :

Example(4): Let $\overrightarrow{\mathbf{E}}=3 \hat{a}_{y}+4 \hat{a}_{z}$ and $\overrightarrow{\mathbf{F}}=4 \hat{a}_{x}-10 \hat{a}_{y}+5 \hat{a}_{z}$, then find:

(a). the component of \mathbf{E} along \mathbf{F} (b). A unit vector perpendicular to both \mathbf{E} and \mathbf{F}

Solution:

(a). the vector component of \mathbf{E} along \mathbf{F} is given by:

$$
\begin{aligned}
& \overrightarrow{\mathbf{E}}_{\mathbf{F}}=|\mathbf{E}| \cos \theta \hat{a}_{\mathbf{F}}=\frac{\overrightarrow{\mathbf{E}} \cdot \overrightarrow{\mathbf{F}}}{|\mathbf{F}|} \hat{a}_{\mathbf{F}}=\left(\overrightarrow{\mathbf{E}} \cdot \hat{a}_{\mathbf{F}}\right) \hat{a}_{\mathbf{F}} \\
& \hat{a}_{\mathbf{F}}=\frac{4 \hat{a}_{x}-10 \hat{a}_{y}+5 \hat{a}_{z}}{\sqrt{16+100+25}}=\frac{4 \hat{a}_{x}-10 \hat{a}_{y}+5 \hat{a}_{z}}{\sqrt{141}} \\
& \therefore\left(\overrightarrow{\mathbf{E}} \cdot \hat{a}_{\mathbf{F}}\right) \hat{a}_{\mathbf{F}}=\left[\left(3 \hat{a}_{x}+4 \hat{a}_{z}\right) \cdot \frac{4 \hat{a}_{x}-10 \hat{a}_{y}+5 \hat{a}_{z}}{\sqrt{141}}\right] \frac{4 \hat{a}_{x}-10 \hat{a}_{y}+5 \hat{a}_{z}}{\sqrt{141}} \\
& \therefore \overrightarrow{\mathbf{E}}_{\mathbf{F}}=\frac{(12+20)}{141}\left(4 \hat{a}_{x}-10 \hat{a}_{y}+5 \hat{a}_{z}\right)
\end{aligned}
$$

The scalar component of \mathbf{E} along \mathbf{F} is given by:

$$
\begin{aligned}
& \overrightarrow{\mathbf{E}}_{\mathbf{F}}=|\mathbf{E}| \cos \theta=\frac{\overrightarrow{\mathbf{E}} \cdot \mathbf{F}}{|\mathbf{F}|}=\overrightarrow{\mathbf{E}} \cdot \hat{a}_{\mathbf{F}} \\
& \overrightarrow{\mathbf{E}}_{\mathbf{F}}=\overrightarrow{\mathbf{E}} \cdot \hat{a}_{\mathbf{F}}=\left[\left(3 \hat{a}_{x}+4 \hat{a}_{z}\right) \cdot \frac{4 \hat{a}_{x}-10 \hat{a}_{y}+5 \hat{a}_{z}}{\sqrt{141}}\right]=\frac{12+20}{\sqrt{141}}
\end{aligned}
$$

1-8: Scalar and Vector Triple Product:
When three vectors are multiplied, not all combinations of dot or cross products are meaningful. For example the product: $\vec{A} \times(\vec{B} \cdot \vec{C}) \quad,(\vec{A} \times \vec{B}) \vec{C}$ not defined under the rules of algebra.

Therefore, the only two meaningful products of three vectors are the Scalar triple and the Vector product as represented them below:

1-8-1: Scalar Triple Product:
A scalar triple product denoted $\overrightarrow{\mathbf{A}} \cdot(\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}})$ and obeying the following cyclic order:

$$
\overrightarrow{\mathbf{A}} \cdot(\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}})=\overrightarrow{\mathbf{C}} \cdot(\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}})=\overrightarrow{\mathbf{B}} \cdot(\overrightarrow{\mathbf{C}} \times \overrightarrow{\mathbf{A}})
$$

$\overrightarrow{\mathbf{A}} \cdot(\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}})=\left|\begin{array}{lll}A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z} \\ C_{x} & C_{y} & C_{z}\end{array}\right|$

1-8-2: Vector Triple Product:
The vector triple product involves the cross product of a vector with the cross product of two others, such as:

$$
\overrightarrow{\mathbf{A}} \times(\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}}) \neq(\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}) \times \overrightarrow{\mathbf{C}}
$$

$$
\overrightarrow{\mathbf{A}} \times(\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}})=\overrightarrow{\mathbf{B}}(\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{C}})-\overrightarrow{\mathbf{C}}(\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}) \text { very important rule----prove this (H. W.) }
$$

Example(5):Three field quantities are given by:
 $$
\overrightarrow{\mathbf{P}}=2 \hat{a}_{x}-\hat{a}_{z}, \quad \overrightarrow{\mathbf{Q}}=2 \hat{a}_{x}-\hat{a}_{y}+2 \hat{a}_{z}
$$ $\overrightarrow{\mathbf{R}}=2 \hat{a}_{x}-3 \hat{a}_{y}+\hat{a}_{z}$ determine the following:

(a). $(\overrightarrow{\mathbf{P}}+\overrightarrow{\mathbf{Q}}) \times(\overrightarrow{\mathbf{P}}-\overrightarrow{\mathbf{Q}})=\overrightarrow{\mathbf{P}} \times(\overrightarrow{\mathbf{P}}-\overrightarrow{\mathbf{Q}})+\overrightarrow{\mathbf{Q}} \times(\overrightarrow{\mathbf{P}}-\overrightarrow{\mathbf{Q}})$
(b). $\overrightarrow{\mathbf{Q}} \cdot(\overrightarrow{\mathbf{R}} \times \overrightarrow{\mathbf{P}})$
(c). $\sin \theta_{Q R}$
(d). $\overline{\mathbf{P}} \times(\overline{\mathbf{Q}} \times \overline{\mathbf{R}})$
(e). A unit vector perpendicular to both $\overline{\mathbf{Q}}$ and $\overline{\mathbf{R}}$

Solution: $(\overrightarrow{\mathbf{P}}+\overrightarrow{\mathbf{Q}}) \times(\overrightarrow{\mathbf{P}}-\overrightarrow{\mathbf{Q}})=\overrightarrow{\mathbf{P}} \times(\overrightarrow{\mathbf{P}}-\overrightarrow{\mathbf{Q}})+\overrightarrow{\mathbf{Q}} \times(\overrightarrow{\mathbf{P}}-\overrightarrow{\mathbf{Q}})=\overrightarrow{\mathbf{P}} \times \overrightarrow{\mathbf{P}}-\overrightarrow{\mathbf{P}} \times \overrightarrow{\mathbf{Q}}+\overrightarrow{\mathbf{Q}} \times \overrightarrow{\mathbf{P}}-\overrightarrow{\mathbf{Q}} \times \overrightarrow{\mathbf{Q}}$
(a).

$$
=0+\overrightarrow{\mathbf{Q}} \times \overrightarrow{\mathbf{P}}+\overrightarrow{\mathbf{Q}} \times \overrightarrow{\mathbf{P}}-0=2|\overrightarrow{\mathbf{P}}||\overrightarrow{\mathbf{Q}}| \sin \theta_{Q P}
$$

$$
\begin{aligned}
& |\overrightarrow{\mathbf{P}}|=\sqrt{4+1}=\sqrt{5} \quad|\overrightarrow{\mathbf{Q}}|=\sqrt{4+1+4}=3 \\
& \theta_{Q P}=\cos ^{-1} \frac{\overrightarrow{\mathbf{Q}} \cdot \overrightarrow{\mathbf{P}}}{|\overrightarrow{\mathbf{P}}||\overrightarrow{\mathbf{Q}}|}=\frac{4-2}{3 \times \sqrt{5}}=\frac{2}{3 \sqrt{5}}=72.65^{\circ}
\end{aligned}
$$

$$
\sin 72.65=0.95
$$

(b).

$$
\overrightarrow{\mathbf{Q}} \cdot(\overrightarrow{\mathbf{R}} \times \overrightarrow{\mathbf{P}})=\left|\begin{array}{ccc}
2 & -1 & 2 \\
2 & -3 & 1 \\
2 & 0 & -1
\end{array}\right|=2 \times(3-0)-1 \times(2+2)+2 \times(0+6)=6-4+12=14
$$

$$
\sin \theta_{Q R}=\frac{|\overrightarrow{\mathbf{Q}} \times \overrightarrow{\mathbf{R}}|}{|\overrightarrow{\mathbf{Q}}||\overrightarrow{\mathbf{R}}|} \quad \overrightarrow{\mathbf{Q}} \times \overrightarrow{\mathbf{R}}=\left|\begin{array}{ccc}
\hat{a}_{x} & \hat{a}_{y} & \hat{a}_{z} \\
2 & -1 & 2 \\
2 & -3 & 1
\end{array}\right|=\hat{a}_{x}(-1+6)+\hat{a}_{y}(4-2)+\hat{a}_{z}(-6+2)=5 \hat{a}_{x}+2 \hat{a}_{y}-4 \hat{a}_{z}
$$

(c).

$$
|\overrightarrow{\mathbf{Q}} \times \overrightarrow{\mathbf{R}}|=\sqrt{25+4+16}=\sqrt{45} \quad, \quad|\overrightarrow{\mathbf{Q}}|=\sqrt{4+1+4}=3 \quad \text { and } \quad|\overrightarrow{\mathbf{R}}|=\sqrt{4+9+1}=\sqrt{14}
$$

$$
\sin \theta_{Q R}=\frac{\sqrt{45}}{3 \sqrt{14}}=0.596
$$

(d). $\overrightarrow{\mathbf{P}} \times(\overrightarrow{\mathbf{Q}} \times \overrightarrow{\mathbf{R}})=\left|\begin{array}{ccc}\hat{a}_{x} & \hat{a}_{y} & \hat{a}_{z} \\ 2 & 0 & -1 \\ 5 & 2 & -4\end{array}\right|=\hat{a}_{x}(0+2)+\hat{a}_{y}(-5+8)+\hat{a}_{z}(4-0)=2 \hat{a}_{x}+3 \hat{a}_{y}+4 \hat{a}_{z}$
(e). $\hat{a}_{Q R}=\frac{\overrightarrow{\mathbf{Q}} \times \overrightarrow{\mathbf{R}}}{|\overrightarrow{\mathbf{Q}}||\overrightarrow{\mathbf{R}}|}=\frac{5 \hat{a}_{x}+2 \hat{a}_{y}-4 \hat{a}_{z}}{3 \sqrt{14}}$
(f). The scalar and vector component of $\overrightarrow{\mathbf{P}}$ along $\overrightarrow{\mathbf{Q}}$ can be calculated as follows:

The scalar component of $\overrightarrow{\mathbf{P}}$ along $\overrightarrow{\mathbf{Q}}$ is equal to: $\quad \overrightarrow{\mathbf{P}}_{\mathbf{Q}}=|\mathbf{P}| \cos \theta=\frac{\overrightarrow{\mathbf{P}} \cdot \overrightarrow{\mathbf{Q}}}{|\mathbf{Q}|}=\overrightarrow{\mathbf{P}} \cdot \hat{a}_{\mathbf{Q}}$

$$
\overrightarrow{\mathbf{P}} \cdot \hat{a}_{\mathbf{Q}}=\left[\left(2 \hat{a}_{x}-\hat{a}_{z}\right) \cdot \frac{2 \hat{a}_{x}-\hat{a}_{y}+2 \hat{a}_{z}}{3}\right]=\frac{4-2}{3}=\frac{2}{3}
$$

The vector component of $\overrightarrow{\mathbf{P}}$ along $\overrightarrow{\mathbf{Q}}$ is given by:

$$
\begin{aligned}
& \overrightarrow{\mathbf{P}}_{\mathbf{Q}}=|\mathbf{E}| \cos \theta \hat{a}_{\mathbf{F}}=\frac{\overrightarrow{\mathbf{P}} \cdot \overrightarrow{\mathbf{Q}}}{|\overrightarrow{\mathbf{Q}}|} \hat{a}_{\mathbf{Q}}=\left(\overrightarrow{\mathbf{P}} \cdot \hat{a}_{\mathbf{Q}}\right) \hat{a}_{\mathbf{Q}} \\
& \hat{a}_{\mathbf{Q}}=\frac{2 \hat{a}_{x}-\hat{a}_{y}+2 \hat{a}_{z}}{3} \\
& \therefore\left(\overrightarrow{\mathbf{P}} \cdot \hat{a}_{\mathbf{Q}}\right) \hat{a}_{\mathbf{Q}}=\left[\left(2 \hat{a}_{x}-\hat{a}_{z}\right) \cdot \frac{2 \hat{a}_{x}-\hat{a}_{y}+2 \hat{a}_{z}}{3}\right] \frac{2 \hat{a}_{x}-\hat{a}_{y}+2 \hat{a}_{z}}{3} \\
& \therefore \overrightarrow{\mathbf{P}}_{\mathbf{Q}}=\frac{4-2}{9}\left(2 \hat{a}_{x}-\hat{a}_{y}+2 \hat{a}_{z}\right)=\frac{2}{9}\left(2 \hat{a}_{x}-\hat{a}_{y}+2 \hat{a}_{z}\right)
\end{aligned}
$$

Q1/ Given $\vec{A}=\hat{a}_{x}-\hat{a}_{y}, \vec{B}=2 \hat{a}_{z}$ and $\vec{C}=-\hat{a}_{x}+3 \hat{a}_{y}$, find both $\vec{A} \cdot \vec{B} \times \vec{C}$ and $(\vec{A} \times \vec{B}) \times \vec{C}$

Q2 / Show that : : $(\vec{A} \cdot \vec{B})^{2}+(\vec{A} \times \vec{B})^{2}=(A B)^{2}$

Q3 / Find the triple scalar and vector product of the following vectors :

$$
\vec{P}=2 \hat{a}_{x}-2 \hat{a}_{y}+\hat{a}_{z}, \vec{Q}=\hat{a}_{x}+\hat{a}_{y}+\hat{a}_{z} \text { and } \vec{R}=2 \hat{a}_{x}+3 \hat{a}_{z}
$$

Q4/ Find the angle between $\vec{A}=10 \hat{a}_{y}+2 \hat{a}_{z} \quad$, and $\quad \vec{B}=-4 \hat{a}_{y}+0.5 \hat{a}_{z}$ using both dot and cross product.

Q5/ Given $\vec{A}=(y-1) \hat{a}_{x}+2 x \hat{a}_{y}$, find the vector at point $(2,2,1)$ and its projection
on vector \vec{B} where $\vec{B}=5 \hat{a}_{x}-\hat{a}_{y}+2 \hat{a}_{z}$

Q6/ Given vectors $\vec{A}=\hat{a}_{x}+2 \hat{a}_{y}-3 \hat{a}_{z}, \vec{B}=3 \hat{a}_{x}-4 \hat{a}_{y}$ and $\vec{C}=3 \hat{a}_{y}-4 \hat{a}_{z}$ find the following :
a. $|\vec{A}|$ and \hat{a}_{A}
b. the component of \vec{B} along \vec{C}
c. $\theta_{A C}$
d. $\vec{A} \times \vec{C}$
e. $\vec{A} \times(\vec{B} \times \vec{C})$
f. $\hat{a}_{x} \times \vec{B}$
g. $\left(\vec{A} \times \hat{a}_{y}\right) \cdot \hat{a}_{z}$
h. $\vec{A} \cdot(\vec{B} \times \vec{C})$

Q7/ Express the unit vector directed toward the point $(0,0, h)$ from an arbitrary point in the plane $z=-2$. Explain the result as $h=-2$?

Q8/ Given $\vec{A}=4 \hat{a}_{y}+10 \hat{a}_{z}$ and $\vec{B}=2 \hat{a}_{x}+3 \hat{a}_{y}$, find the magnitude and vector components of \vec{A} on \vec{B}
?

Q9 /Given Vectors $\vec{T}=2 \hat{a}_{x}-6 \hat{a}_{y}+3 \hat{a}_{z}$ and $\vec{S}=\hat{a}_{x}+2 \hat{a}_{y}+\hat{a}_{z}$ then find the
following :
(a)- The scalar projection of \vec{T} on \vec{S}
(b)-The vector projection of \vec{S} on \vec{T}
(c)- The angle between \vec{T} and \vec{S}

