
Chapter Two 

Vector Calculus and Transformation Between Coordinate Systems 

2-1:Transformation Between Coordinate Systems: 

                                                                                                   The position of a given point in space is 

invariant with respect to the choice of coordinate system. That is, its location is the same irrespective of 

which specific coordinate system is used to represent it. The same is true for vectors. The relation between 

the variables               -Cartesian             Cylindrical and            in Spherical coordinates will be established 

to transform any one of the three system into vectors expressed in any of the other two. 

 

2-1-1: Cartesian to Cylindrical Transformation: 

                                                                                         Point P in the figure below , has Cartesian 

coordinate               and cylindrical coordinate            . Both systems share the coordinate (z ), and the 

relation between the other two pairs of coordinates can be obtained as follows: 
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â

ρ 

 sin
 cos ρ 



zâ
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The relation between the unit vectors of Cartesian and Cylindrical coordinates 

are given by: 
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Therefore, when we have a vector in Cartesian coordinate given by:                                                       

 

 

Then this vector is transformed to cylindrical coordinate as follows: 

 

 

 

 

 

In matrix notation, we can write the transformation of vector (A) from                     

to                     as: 
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These equations in matrix notation can be written as: 
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Therefore, the vector (A) can be transformed from                        to                            

 by the matrix:    

),,( zyx AAA

zz aaaz ˆˆˆ),,( AAAA  

While when we have a vector ( A ) in cylindrical coordinate given by:                                            

                                       , then this vector can be transformed to Cartesian  

coordinate as: 
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2-1-2: Cartesian to Spherical Transformation: 

                                Point (P) in the figure has Cartesian coordinate                 and 

spherical coordinate               . The relation between the coordinates can be 

obtained as follows: 
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The unit vector of Cartesian and spherical coordinates are related to each other 

through the following relations: 
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In matrix notation, we can write the transformation of vector (A) from                      

 to                         as:   

),,( zyx AAA

),,(  AAAr
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Then this vector is transformed to spherical coordinate as follows: 

zzyyxx aaa ˆˆˆ AAAA 


Therefore, when we have a vector in Cartesian coordinate given by:  
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These equations in matrix  

notation can be written as: 
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),,(  AAArTherefore, the vector (A) can be transformed from                         to                            

by this matrix:                                     
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Then this vector can be transformed to Cartesian coordinate as: 
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While when we have a vector ( A ) in spherical coordinate given by: 
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2-1-3: Cylindrical to Spherical Transformation: 

                                                               Point (P) in the figure has cylindrical 

coordinate             and spherical coordinate                  . The relation between the 

coordinates can be obtained as follows: 





The unit vector of Cylindrical and spherical coordinates are related to each 

other through the following relations: 
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In matrix notation, we can write the transformation of vector (A) from                        

to                         as:   
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Then this vector is transformed to spherical coordinate as follows: 
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Therefore, when we have a vector in Cartesian coordinate given by:                                               



These equations in matrix notation can be written as: 
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by this matrix:   
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Then this vector can be transformed to Cartesian coordinate as: 
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While when we have a vector ( A ) in spherical coordinate given by: 



(a). since the vector is in cylindrical coordinate, and we have the following matrix  

to convert it to Cartesian coordinate: 
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at point (3,-4,0), we have :  
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Therefore, the vector in Cartesian coordinate is: 
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Example(1): Let    ,                                                               then :  

 

 

(a). Transform       into Cartesian coordinate and calculate its magnitude at point (3,-4,0). 

 

(b). Transform       into spherical coordinate and calculate its magnitude at point (3,-4,0). 



The spherical point of ( 3, -4, 0) is given by :  
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(b). since the vector is in cylindrical coordinate, and we have the following 

matrix to convert it to spherical coordinate: 
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Substituting these value in the above equations we get: 
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Therefore the final form of the vector in spherical coordinate is given by: 



Home Work 

Q1/ Express the vector  zyx azayaxA ˆˆˆ 


 in spherical and cylindrical coordinates. 

Q2/Transform the vector field   aaF r
ˆsinˆcos2 


 into Cartesian coordinates?  

Q3/ Express the vector   zyx azaxyayxA ˆˆ)(ˆ)( 


 in spherical coordinate?  
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Q4/Transform the following vectors to cylindrical and spherical coordinates : 

b.  a.  ,    and   , 
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Q5/ Transform the following vectors into spherical coordinates and then 

evaluate them at the indicated points: 

(b).  

(c).  

(a).  



2-2:Line, Surface and Volume Integral: 

                                                                            The familiar concept of integration 

will now be extended to cases when the integral involves a vector. By a line we 

mean the path along a curve in space. 
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The line integral   is the integral of the tangential component of  

, when the path of integration is a closed path such as ( abca) as shown in figure, this integration 

becomes:       which called the circulation of  
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SThe surface integral or the flux of a given vector  through a smooth surface ( ) is given by: 
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and (ds) in all three coordinates are given as: nâ SWhere,   is the unit vector normal to ( ),  

for a closed surface we define a volume, and the previous integral becomes.   dsA




A closed path defines an open surface whereas a closed surface defines a volume, and the 

volume integral is given by: 
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Where,  (dv) in all three coordinates are given as: 
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Example(2): 

(a). find the length of each of the curves:  

(b). Calculate the area of the surfaces area defined by:   

 (c). determine the volume of the region defined by:  

Solution:  
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Home Work 

Q1/ Using the differential length   dl , to find the length of each of the following curves: 
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Q2/ Calculate the area of the following surfaces using the differential surface area   ds

50,
23

,2  z






4

0,31,1


 z tConsr tan,9060,40   a-  b-  c-  

Q5/ Find the area of a cylindrical surface described by :  
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: Q3/ Use the differential volume  dv  to determine the volume of the following regions : 
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Q4/ Using spherical coordinates to express the differential volume integrate, to 

obtain the volume defined by :  


