
2-3-3: Curl of a Vector and Stokes’s Theorem 
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(S)bounded by (     )  as given in the following figure, provided that ( ) and Curl 
 continuous on S.  
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Stokes’s theorem, states that the circulation of a vector field ( ) around a closed 
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path (      )  is equal to the surface integral of the curl of ( ) over the open surface 
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From this figure the line integral around each path is given as:  
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The line integral around path (1)=  
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According to Taylor series we have:  )4(
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Substituting eq.(4) into eq.(3) we get:  
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By the same way we can evaluate the line integrals around a closed path in 

both y and x-planes as given below: 
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Adding equations (5) and (6) we get: 
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Since, the circulation of a vector ( A ) is represented as: 
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And the vector representation of the Cartesian surface elements is given by: 

Thus:    )10(  dsAdlA
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Hence, the dot product of eq.(8) with eq.(9) ,gives the right hand side of eq.(7). 

Therefore, eq.(7) can be written in a simple form as: 



The curl operator has the following properties: 

(1). The curl of a vector field is another vector field  
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Therefore the circulation or the curl of any vectors can be represented 

mathematically in matrix notation as follows: 
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Solution:  
dsAdlA  
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The mathematical representation of Stokes’s theorem is given by: 

 The line integral around a closed path defined by these bounded region is as  

follows: 
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Example(3): A vector field is given by   

segment of cylindrical surface defined by  
 ? 

verify Stoke’s theorem for a  



The left hand side of the Stokes’s theorem is :  dsA 
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It is clearly seen that the left and right hand side has the same value, 

which indicates the validity of the Stokes’s theorem. 



Home Work 
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Q1/ Evaluate both sides of the Stoke’s theorem on the spherical cap of   

 and it’s perimeter, for the field :  

)ˆsinˆcos(   aaA 


  0,0,2 andzm

Q4/ Verify Stoke’s theorem for the vector field :   

 , in the region defined by:   
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Q2/ Find the divergence and curl of the following vector fields: 

(b). (c).  
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Q3/ Find the circulation of each of the following vector fields and evaluate it at 

its indicated point: 

(b). (a). 



2-4: Laplacian of a Vector: 

                                          For practical reasons, it is expedient to introduce a 

single operator which is the composite of gradient and divergence operator. 

This operator is known as the Laplacian.  
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The Laplacian of a scalar field (V) , written as  is the divergence of the gradient of (V)  

Thus in Cartesian, Cylindrical and Spherical coordinate systems the Laplacian operator is expressed as: 
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 Spherical coordinate 



(1). A scalar field (V) is said to be harmonic in a given region if its Laplacian 

vanishes in that region. In other words, if: 
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Then,  the solution for (V) is harmonic ( it is of the form of the sine and cosine ). 

(2). The Laplacian operator of a vectors is defined as a grad div (A)  )( A



 and is expressed as: 
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Home Work:    Prove That: AAA
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2-5: Classification of Vector Field: 

                                                                   A vector field is uniquely characterized 

by its divergence and curl. All vector fields can be classified in terms of their 

vanishing or non-vanishing divergence or curl as follows: 
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(1). A vector field       is said to be Solenoid ( or divergence less) if  (                ) [ such field has neither 

  source nor sink of flux] . Example of such fields are ( magnetic field, conduction   current 

density under steady state condition).  

: 
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 can always be expressed in terms of another vector such as   The Solenoid field 
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(2). A vector field   is said to be irrotational ( or conservative) if,   

, example of such fields are [ Electrostatic field and gravitational field]. 
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(3). When  02  V , the field is said to be harmonic 

(4). When the field is independent on position the field is said to be uniform field 

(5). When the field is independent on time the field is said to be constant field. 

(6). The field is said to be Rotational ( or non-conservative ) if  0 A


(7). The field is said to be divergence if  0 A


Thus, an irritation field  A


 can always be expressed in terms of a scalar field (V),  
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02 kif    the equation is called (Laplace’s ) 

quantitykif 2   the equation is called  ( Helmholtiz’s) 

quantitykif 2
 the equation is called   ( Poison’s) 
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 the equation is called  ( Schrödinger wave equation)  



Example(4): display whether the field vector   
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 is solenoid,  conservative or none of them? 

Solution: 

(1). In order to show that the field is solenoid, it must be satisfy:  0 E
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Therefore the field is not solenoid: 

(2). In order to show that the field is conservative, it must be satisfy:  0 E
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Therefore the field is not conservative: 



Home Work 
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Q1/ Given field   , it can be said that  

 a. Harmonic          ,    b. Divergenceless        ,    c. Solenoid      ,      d. Rotational      ,   e. Conservative.    
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Q2/ If a vector field   is solenoid, which of the following is true :  

b.  c.  d.   e.  a.  
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Q3/ If  is the position vector of point (x,y,z)  then prove that : and 
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