2-3-3: Curl of a Vector and Stokes’s Theorem

Stokes’s theorem, states that the circulation of a vector field ( A ) around a closed

path (L )is equal to the surface integral of the curl of (A ) over the open surface

(S)bounded by ( L )as given in the following figure, provided that (A ) and Curl
continuous on S.

fA-dl = {VxA-ds —————————————— 1)
L L
From this figure the line integral around each path is given as:
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The line integral around path (1)= Alx dx
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The line integral around path (2)= A, dy

v X<

The line integral around path (3)= = A dX

The line integral around path (4)= = Ay dy



A3x :Alx + an dy
oy
According to Taylor series we have: i (4)
A, =A, +22Y g
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Substituting eq.(4) into eq.(3) we get:
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By the same way we can evaluate the line integrals around a closed path in

both y and x-planes as given below:

- = oA, oA
A-dl= (curl A), .. = (=—""t)dxdz
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Adding equations (5) and (6) we get:

. — OA oA
§A-dl = (—2 —GAX) dxdy+(aAX —aAZ) dxdz+(aAZ ——) dzdy——————- (7)
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Since, the circulation of a vector (A ) is represented as:

OA, OA,|. |0A, OA,|. |0A, OA |.
= — a, + — a, + — a, ——(8)
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curl(A) =V x A=

And the vector representation of the Cartesian surface elements is given by:

ds =dydza, +dxdza, +dxdyd, ————(9)

Hence, the dot product of eq.(8) with eq.(9) ,gives the right hand side of eq.(7).
Therefore, eq.(7) can be written in a simple form as:

Thus: §Aa= §§XA£ ______________
L L



The curl operator has the following properties:
(1). The curl of a vector field is another vector field

(2). Vx(A£B)=VxA+VxB) (3). Vx(VA)=V(VxA+VVxA  HW.

(). _ (5). _
. Vx(AxB)=A(V-B)-B(V-A)+B-VA-(A-V)B
NN 0

Therefore the circulation or the curl of any vectors can be represented
mathematically in matrix notation as follows:

a, 4, 4, 8, pd, 4,
. | 0
o i_|l0 0 @ o i- 110 @

ox oy oz p |6p 0¢ oz

Ao A A A, PA A




0S ¢

- - - =3 C A -
Example(3): A vector field is given by B=——=a, verify Stoke’s theorem for a
o,

segment of cylindrical surface defined by r=2 , 60°<¢<90° and 0<z<3

Solution:

The mathematical representation of Stokes’s theorem is given by: §A d = i

The line integral around a closed path defined by these bounded region is as
follows:

]

VxA.-ds

B-dl +[B-d
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B.dl [B.4,-pdga

20 OV T

o .
o
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B-di =[B,4, pdg(-4,) =0
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fVxA-ds

The left hand side of the Stokes’s theorem is
S
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VxB=—losga, ~sing 3, ]
xB=—|cosg a, —sing a,

”j’” sm¢ dzds

Hence, §(VxB) .ds :ifi cos¢ &, —sing & | pdzdga, =
S lO 7130
1><(c037z/2—c037r/3)><(3—0)

§(V><B) ds =

§(€xé).ds:§(o—§) :i(ﬁxé).&é:_z
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It is clearly seen that the left and right hand side has the same value

which indicates the validity of the Stokes’s theorem



Q,/ Evaluate both sides of the Stoke’s theorem on the spherical cap of
r=2m, 0<60<45 ,0<¢<360° andit’s perimeter, for the field : E =5rsin @ cos? ¢ é¢

Q,/ Find the divergence and curl of the following vector fields:
= T 2 SR
(). A=e"Y & +sinxy 4, +cos”xz 4,

= = PO P 2 aiv g A
(b). B:pZZCOS¢ép+ZSin2¢éZ (c). C=rcoséd ar—Fsmé? a, +2r°siné a,

Q./ Find the circulation of each of the following vector fields and evaluate it at
its indicated point:

(a). A=12sinoa, at (3,30°,0) (b). A=10g “cos¢ &, +10sing &, at (2,0°,3)

Q,/ Verify Stoke’s theorem for the vector field : A= (pcosgd, +singd,)
, In the region defined by: p=2m, z=0 , and 0<¢<nx



2-4:. Laplacian of a Vector:
For practical reasons, it is expedient to introduce a

single operator which is the composite of gradient and divergence operator.
This operator is known as the Laplacian.

The Laplacian of a scalar field (V) , written as y?y is the divergence of the gradient of (V) ﬁ . ﬁv

Thus in Cartesian, Cylindrical and Spherical coordinate systems the Laplacian operator is expressed as:

oN oV 0oV

VZV = + + Cartesian coordinate
ox* oy* oz’
vy -1 0 av+1azv+azv ol el coord
p Op 'Oap p2 8¢2 PYE ylindrical coordinate

Spherical coordinate



(1). A scalar field (V) is said to be harmonic in a given region if its Laplacian
vanishes in that region. In other words, If: V3 =0

Then, the solution for (V) is harmonic (it is of the form of the sine and cosine).

(2). The Laplacian operator of a vectors is defined as a grad div (&) V(V - A)
and is expressed as:

VZA=V(V-A)—-VxVxA
VCA=V’A 4, +V’A 4 +V?A,a

—_ —_

Home Work: Prove That: VXV X (V A) VZA




A vector field is uniquely characterized
by its divergence and curl. All vector fields can be classified in terms of their
vanishing or non-vanishing divergence or curl as follows:

@. V-A=0 , VxA=0 ). V-A=0 ., VxA=0

d. V-A=0 , VxA=0

\
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(b)" (C)

€. V-A=0 , VxA=z0

VVYVYyYYyY
VVYVYYY
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Q
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(1). A vector field A is said to be Solenoid (or divergence less) if ( §.A=0 ) [ such field has neither

source nor sink of flux] . Example of such fields are ( magnetic field, conduction current
density under steady state condition).

The Solenoid field A can always be expressed in terms of another vector such as F

—_ —

V-A=0 means that §A-£
S

— —

0 and F=VxA V-VxA=0



A VxA=0
VxA = f/&d_[: WxA’-&:o
L

Thus, an irritation field A can always be expressed in terms of a scalar field (V),
that is if:

—

VxA=0 then A=—VV then §A-a=0 and hence VxVV =0
L

(3). When VA =0 | the field is said to be harmonic

(4). When the field is independent on position the field is said to be uniform field

(5). When the field is independent on time the field is said to be constant field.

(6). The field is said to be Rotational ( or non-conservative ) if VxA %0

- -

(7). The field is said to be divergence if V-A =0



dy _1dY V2 4+ k?py =0

|f k2 — O the equation is called (Laplace’s )
if k? =—(quantity theequationis called ( Helmholtiz’s)

if k* =+ quantity

if k* = constant x kinetic energy

the equation is called ( Schrodinger wave equation)



Example(4): display whether the field vector E=rg™ 4, is solenoid, conservative or none of them?

Solution: o
(1). In order to show that the field is solenoid, it must be satisfy: V-E=0

.~ 190 1 1 ok, 150 -
V-E:—Z—(rzEr)-l- 9)+rsin0 6¢¢ =5 ar(rzre )

: i(EH sin
rsiné o6

re or

@,E:iz(_rsJFZrz)e—r 0 Therefore the field is not solenoid:

r

(2). In order to show that the field is conservative, it must be satisfy: VxE =0

a, ra, (rsind)a, a, ra, (rsind)a,
U xE = : 1_ 0 0 0 __ 1_ 0 %, 0
r<sin@ |or 080 ¢ rsin@ | or 080 ol
E, rE, (rsin@)E¢ re’” 0 0
VxE=——[a (0-0)+ra, (0-0)+(rsin6) &, (0-0)]=0
rsiné@
S Therefore the field is not conservative:
VxE=0




Q,/ Given field ,5\=3x2yzéx+x3zz?1y+(x3y—22)éZ it can be said that A

a. Harmonic , b. Divergenceless , C. Solenoid , d. Rotational , €. Conservative.

Q./ If a vector field A Is solenoid, which of the following is true :

a. §A-d|=o b. {A-ds,:o C. VxA=0 d. VxA=z0 e. V?A=0
L S

Q,/ If (F) is the position vector of point (x,y,z) and r =|F| then prove that :

ol

(@- v(inr) == and  (0) vi(inr) =%

Q. Let G=xy*z°4,, then calculate: a vxG b. Vv.yxG ¢ vxvx@ d. VxVG,

Q5/ Evaluate VWV ,V-V , and VxWVV if 'a. V=3x’y+xz b. V=pzcos¢ ¢. V =4r’cosdsing



