3-8: Electric Potential:

Form our discussion in the preceding sections; the
electric field intensity (E ) due to a charge distribution can be obtained from
Coulomb’s Law in general or from Gauss’s law when the charge distribution is
symmetric.

Another way of obtaining ( g ) is from the electric scalar potential ( V ) to be
defined in this section. In a sense, this way of finding ( g ) is easier because it
Is easier to handle scalar function than vectors.

In this section we develop the concept of electric potential and show its
relationship to electric field intensity. When force is applied to move an object,
work is the product of the force and the distance the object travels in the
direction of the force. Mathematically, in moving the object from point (a ) to
point (b ), the work can be expressed as:
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We know from Coulomb’s law that the force exerted on a charge ( Q ) by an electric field ( g)

Is (F=Q E ). Thus, the work done by the field in moving the charge from point (a) to point
(b)is then:

b b
We_ fielg :_[F'dl = Q_[E'dl ________ (2) E b

Y

If an external force moves the charge against the field, the work done is negative
of We_gqq OF:

ext.

b
We. = ~We_fieia :_QIE’dI -——Q)



Dividing (W) by (Q) in eq.(3), gives the potential energy per unit charge. This
quantity denoted by (V,, ), is known as the potential difference between points

(a)and (b). Thus: b
W
Vo= "0 _[ ———————— (4)

, and have the following properties:
(1). V,, is independent of the path taken,

(2)-V,, is measured in unit of (J/C) or volts (V)

(3). In determining V_, (a)is the initial point while (b ) is the final point.
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dxa, +dya, +dza, ———————- cartesian
dl =dpa, +pdg 4, +dzd, ———————— cylindrical b
dra, +rdfd a, +rsinddg a, —————-— spherical |
(— work performed by the field Vap =Va =V
V., =<0 closed path V, is intial point
|+ work performed by an external force Vs 15 final point

Electric potential difference: is defined as the work done by an external force to
move a charge from point ( a ) to point ( b ) in an electric field divided by the
amount of charge moved, and it related to absolute potential or electrostatic
potential as :

Vab :Vb _Va (5)

Absolute potential: is defined as a potential at which the reference point is taken at
infinity that is: (V .=zero )



It is interesting to see that, if a closed path is chosen the integral will return
zero potential differences:

Vabcda = _!: _I

Then for closed path § Edl=0—-—————— (7)

+[E-dl+[E-dl|=0-————— (6)

O'—'Q_
Q_'—y‘m

Equation (7) is also called Kirchhoff’s voltage law. Physically this equation
means that no net work is done in moving a charge along a closed path in an

electrostatic field. Applying Stokes’s theorem we get:

§E-C_H>=§§XE-CTS>=O andhence: VxE=0 ——————— (8)

£ Equipotential

surface: is a
surface at which
no work IS
eeded to move
oint charge




Eqg.(8) is called second Maxwell’s equation in point form and in static electric
field. This equation physically means that the electrostatic field is a
conservative or ir-rotational field. —

VxE =0
VA | (4)

if the E— field is due to a point charge located at the origin (0,0,0)

, then generally the electric field is given by:




Thus the potential difference ( Vab) may be regarded as the potential at ( b ) with reference
to (a). For point charge, it is customary to choose infinity as a reference that is we
assume the potential at infinity is zero. Thus if ( V, =0 at a— o)

then the potential at any point (r, =) due to a point charge ( Q) located at the origin
IS given by:

V = < for point charge
Arrer
V :i o for a groupof charge
k14ﬂgq
I . o
V = jp' d for line charge distribution
Arre
1 ¢p,ds o
V = j for surface charge distribution
Arre r
1 ¢p, Qv o
V = j for volume charge distribution
Are r



Example(1): A total charge of ( Q ) is uniformly distributed around a circular ring of radius
(p). Find the potential at a point on the axis (h) m from the plane of the ring. Compare with

the result where all charge is at the origin in the form of a point charge.

Solution:

R=—p4a, +h4, R|=yp® +h’ Q=p,dl dl =p dg
£

(0, @,h)

V — p,d|:2f p p dg _ PP
d7eR  VArep?+h® 2e+4p?+h?
Q=pdl=p, 2z p)= p p=2g
T
VA Q
A g+ p° +h?

If the charge is concentrated at the origin , then:

»Y

p=0 , and V



Example(2): A total charge of ( Q ) is uniformly distributed over a circular disk of radius
(p). Find the potential at a point on the axis (h)m from the plane of the disk.

Solution:

R=-p4a, +h4, \ﬁe\:,/p%hz Q=p,ds ds =p dpdg
WAL ” ps p dp df let p=htand = dp=hsec’Hdé
dreR s Ameqp’ +h?

2ra )
\Y :”'OS h*tand sec”9 do d¢ P h (27z)J'tan¢9 secé’déi_'os (secH)
% Ame hsecd 4re 2¢
2 2 a Z
V:psh 10+h V IOS /p +h2 A
2¢ h 0 2¢ 0

v =P (\Ja? +h? —h)
2¢&
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But in the ( Z =0 plane ) the potential difference is reduces to:

V:'OS a
2




Example(3): Find the work done in moving 10 nC charge from point (2.7, 7/2)

to the origin in afield: g _ o0r a (V/m)?
r’+1

W:_QJ’E.C_H':_QI 520r a,-(dra, +rdoa, +rsinddga,)
r-+1

Solution:
50r

WQj

W =402.36 nJ

dr=-Qx 25 (In(r? +1))|, =—25x10x10"° (0 ~1.61)

Example(4):Find the difference in the amounts of work required to bring a point
charge Q=2nC from infinity tor =2m and from infinity to r =4m in the field:

o _ 105
Solution: E — S (V/m) ?
W =—QJE-J QJ— a,-(dra, +rdoa, +rsin0dga,) r
¢10° 5 2 9 5
WZ:—QI— dr =—Qx10° x (In(r)|_ =—2x10"°x10° (0.693)
W, = —1.38x107 ]
¢10° 5 4 -9 5
vv4——Qj— dr =—Qx10° x (In(r)| =—2x10"°x10° (1.38)

W, = — 2.772x107* J
W, =W, =—1.39x107* J



Example(5):In spherical coordinate, point A is at a radius of r, =2m, while point B

is at radius I; =4m, Given the field E:—lr—? 4 (V/m) find the potential at pointA and B

, assume zero reference at infinity and then find v, -v, 2 Ans. Vv, =2v,=-8 Volt

Solution:

—
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V, =—i(—1—6j dh—(?j‘: —_4V
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—8—(-4)=-4V —»>=V, =2V, =-8V



3-9: Gradient of Potential Difference:

From the defining equation for potential
difference (V. );, Where ( - E- dI) Is the differential potential difference over (E

distance along the path from point (a) to point (b ). Thus: v =- IE.cu

oV

if dl =dl4, is in the same direction as E, =0 and hence cos@=1 and =" =—E

since the potential decreases in the direction of ( E ) as indicated along the

equipotential surfaces. Now, if(?li =0l (_éE) opposite to the direction of (E) then
@ = and hence:




Thus, the maximum derivative is in a direction opposite to (E ) and is equal to the
magnitude of (E )When (V) is a function of (x,Yy,z) , then the eq.(3) becomes:

Since from the chin rule we have:
(av oV oV j_E g

dv —dx+—dy+a—dz

ovN . oV | 8V -
dv =| =4, +2- 4, +2-4, |-di =E-d
OX oy o
VV = N a, +ﬂ a, +ﬂ a, Cartesian coordinate
OX oy 0z
VV = N 4 + 1V a, +ﬁ a, Cylindrical coordinate
op ©  p g 0z
— ov . 1oV 4 1 oV , . .
a Spherical coordinate

VW=—a, + a, +— ’
or r o0 rsiné og¢



Physically the (-) minus sign in eq.(4) indicates that the electric field intensity (E
IS pointing in the direction of decreasing potential (V).

Or it means that the electric field intensity ( E ) is directed from the higher to

lower levels of (V)

E
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Example(6): consider a pair of charge points of equal magnitude and opposite sign, (+Q)
and (-Q) and separated by a small distance (d) as shown in figure below, such a pair
termed an electric dipole. Find an expression for the electric field intensity and potential
field of such a dipole at adistance (r ) that is large compare to the charge separation (d).

_ +Q _ Q _ Q RZ _Rl ________ (1)
dreR, 4reR, dre\ R R, )™ P (r,0,0)
A
From figure we see that: R, —R, =dcosé
And because (1)) d ), then : Ry R, =r?
Therefore eq.(1) can be reduced to:
>V
d cosé .
V, = Q—2 _____ (2) -q¢Q " d cos B
Adrer x
V, = > where P=Qd and &, is a unit vector
drer

( P=Qd ). The displacement of the electric charges due to an external electric field is
called electric dipole moment.




E-—vvo| 24t 94 1 3, |[Qaoos
or r o0 rsing 5¢ drer?

QdCOSH stm@

+0
49
2 er’ & 2ﬁgr

M
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Therefore, the electric field intensity for electric dipole is given by:

_ d A | )
E = Q 3 (COSH ar +Sin @ aé?) ___________ (3)
2wer
V=9
(1). For point charge ( monopole): Amer
- Q@ _4,
drer
V:aMmf
(2). For two charges ( dipole) ”;r
-2 —(cos® &, +sind &,)

2rer



From these two set of equation we notice that the (E ) varies inversely with (r2) and (V)
varies inversely with (r) for monopole. While for dipole € ) varies inversely with (r2) and
(V) varies inversely with (r?).

Therefore, the electric field intensity (£ ) due to successive higher order multipoles [such
as quadrapole (two dipole) or octapole (two qudrapole)] are vary inversely as r4, r>, r6.....
and (V) vary inversely with r3, r4, r> .......
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o) Q= p, dv



Example(7):In the potential field \y =52 , how much charge is located within a unit
sphere centered at the origin ?

Solution:

The electric field intensity is related to the electric potential through the gradient
equation as:

ov . 1oV . 1 oV |

E=—VV=—-(—4 + 4, +— a,) =>=E=-10r4,
or r o0 rsiné@ o¢
. _ . - oD
D=¢ E=-10grad and p, :V-D:%Q(rzDrﬁ 1 2 (D, sin6)+ 1 ’
r<or rsiné o6 rsin@ o¢

py == (12 (-106.1)+0+0 == p,=-30¢.

Qz_[,ovdv Tﬁ( —30&.)r’sin@ dr d6 d¢g = —30¢, zﬁsmededqﬁjr dr
000

Vv

Q=-30s. x (47z)><?|2 —= Q=-40s 7



Example(8): A disk of O<p<a , z=0 and OS¢S2fz\:arries a surface charge density of

p . .
p=p. (C/m?) find,, ., 00,2) " free space?

Solution:

For a disk or sheet of charges the electric potential field is related to charge
density by the following equation:

1 p.ds
V = = 1
47;50»( @

R=(0-p)a, +(z-0)4, =-pa, +24,

R:‘fi‘: PP 42 — e (2) and ds=pdpdg———————— 3)
,02
v 2 If’oazpdpd% S PP L
dre ,02+22 dre 8.2 0 0 ,02+22

let p=ztand

1 fz'tan’Osecddd  z° | )
= tan & (1+sec? 6)dé _ 2
2¢, az-([ zseco 2¢ a’ -[ ( ) dp = ZS€EC

0




3 a a Z3
V- - Itan0d9+jtan95ec29d¢9 —————————— (4) V= -
2¢.a° |y 5 2. Q
D Z
tand=—  then cosé = —
since: Z P +1

and tan’@=1+sec’ @

Substituting these identity into eq.(4) we get:

a

3 2
- ~|—1In ‘ + '02
26‘08. ,,p2+22 Z

0

(—In(cos O) + tan® ) |:



Q,/Find E,DB,p,,and Q for each of the following potential difference fields:

a- VvV =7x2 b- V =2pcos¢ C- V=§sin¢9
r
V,E,D,and p, at (2,-2,2):

a- V=3xy+z+4 b- Vv =5sing e C- V=ﬂsinesin¢
r

Q,/ How much charge must be located within a unit sphere centered at the origin in order to produce the potential
field y — =67
go

,forr<imo

1 . .
Q,/ A circular disk of radius (a) carries charge density#: =~ (C/m")- Calculate the electric potential at(0,0,h) ?

Q¢/ A sheet of charge density?s =100 (nC/m?)occupies the x-z-plane at y=0. Find the work required to move =2 nC

charge from A(-510,2)m to B(2,3,0)m, then evaluate electric potential difference¥ss ?

Q/ For the electrostatic dipole moment, given that d =1cm and [E[=2 (mv/m) at r=1m and 6=0" Find
Eatr=2m and 8=90"?



Q-/ Find the work done in moving a point chargeQ =-204C from the origin to (4.2,0)m in the field:

E=2(x+4y)4, +8x4, (N/C)along the path8y=x*2 Ans. (1.6 mJ)

Qg/ Given the cylindrical coordinate electric fields asE =% a, (V/m) for 0<p<2m and

E=254, (V/m) for p>2m.Find the potential differencev,, for A(1,0,0) and B(4,0,0)? Ans.8.47V



3-10: Energy and Energy Density in Electrostatic Field:
To determine the energy

present in an assembly of charges, we must first determine the work necessary to
assemble them. Suppose we wish to position three point charges Q;,Q, and Q,in an
initially empty space as shown in figure.

m
I
o




(2).The work done in transferring ( Q, ) from infinity to ( P, ) is given by:

wW2=Q,V,, ————— (2) where, V,, means V, dueto (Q,)

(3)Similarly, the work done in positioning ( Q3 ) at (P; ) is equal to :

W3=Q, (Vg +V,,) ——————— (3)

Therefore, the total work done in positioning the three charges is:

W, =W1+W2+W3=  0+Q,V,, +Q, (Vs +V,,) —————— (4)

Now, if the charges were positioned in reverse order; then the total work is given by

W, =W1+W2+W3= Q,(V,,+V,)+Q,V,,+0 ———————————— (5)



Adding egs.(4) with (5) we get:
2We =Q, (Vy, +Vi3) +Qu(V,, +V,5) +Q5 (V5 +Vs,)

1 1 1 1
We :EQ1V1+EQ2V2+EQ3V3 :E(Q1V1+Q2V2 +Q,V;) ——————~ (6)

Where, ( V,, V, and V; ) are total potential at points ( P,, P, and P; ),
respectively. In general, if there are ( N ) point charges, then eq.(6) can be
written as:

W, :% i QcV, (in Joules ) ———————— (7)

However, if instead of point charges, the region has a continuous charge
distribution, the summation in eq.(7) becomes integration; that is:

W =3 \ pdl ————————— (8) Line charge distribution
W =% \ p,ds ————————— (9) Surface charge distribution
W¢ :% \ G, ) s (10) Volume charge distribution



Since, Py =V-D , SO €(.(10) can be further developed to yield:
1 .
W, :EJV (V-D)dv ———————— (11)

But for any vector A and scalar v We have the following identity:

V-VA=A-VW+V (V-A) = and hence V(V-A)=V-VA-A-VV ————— (12)

Applying the identity given in eq.(12) on to eq.(11) we get:

l1¢.= = 1= =
W_ =§j(v-v D) dv —EJD-VV dv ————————— (13)

And according to divergence theorem we can rewrite the eq.(13) as given below:



Since (V) varies inversely as (r ) and ( D) varies inversely as (r?) for point charges; and
(V) varies inversely as (r2) and ( D) varies inversely as ( r®) for dipoles and so on.
Hence, (V D) in the first term of the right hand side of eq.(14) must vary inversely at least
as (r3) while (ds) varies directly as (r?2). Consequently, the first integral in eq.(14) must
tend to zero as the surface ( S ) becomes large. Thus, eq.(14) reduces to:

We=-—[B-Wdv , but E=—VV then
W, = %IB-E dv and D=¢E  hence
W, =2 [E-E dv
=2
Therefore, the total energy stored in electrostatic field can be finally simplified to:
1 ’ :
W, = > g_[E dv  (in Joule) - —————————— (15)
For this we can define electrostatic energy density W in (Joule/m®) as:
dw 1 1 D?
——=—¢ E?

W, =—— T 16
= dv 2 2 & (16)

Hence we can say that the electrostatic energy is given by:

We =[w,dv  ————(17)



Example(9):Given g_sxya +3z4, (V/m)
, find the electrostatic potential energy stored in a volume defined by:
0<x<2m , 0<y<Im and 0<z<1m assume ¢=¢,

Solution:

The electrostatic energy stored in this field bounded by these regions is
calculated as follows:

1

W =%go IEZ dv = &l jﬁ[ZSXZ y? +922 | dxdy dz
v 000

1 ey
w3 |55 )04 ) fes( %t cofonk

W, :lg {§x8x1><1+ 9><1><2><1}
2 9 3

9 3

1 200 18| 1 |200+54| 1 254
. &, | — =—c|——|[=—&x—
2 2 2

2 9 9

w, =0.124 nJ



3-12: Derivative of Poisson’s and Laplace’s Equations:

To derive the Poisson’s
and Laplace’s equation which are useful for determining the electrostatic
potential ( V) in regions at whose boundaries ( V) is known. The following
steps give these two equations:

With (B =¢E), the differential form of Gauss’s law given by: (v.5- ) may be written as:

V.eE=p, ————- @) but we have E=—VV —————— (2)

Equation(3) is called Poisson’s equation for a volume (v) containing a volume
charge density (p,), the solution for (V) in eq.(3) is given by:




Equation (5) is called Laplace’s equation and in Cartesian, cylindrical and
spherical coordinates is given by:

2 2
VAV = 19 pav + 12 a \2 + 8\2/ —————— (7) cylindrical coordinate
op) p°op° 01

p op




Example(10) A potential field is described by, v =5x2 (volt) iS Laplace’s equation satisfied?
If not , find the charge density in the region?

Solution:
In order to satisfy Laplace’s equation for given function, it must be: V2/ =0
oN oV s oV d*(5x%)

4+ =10
ox*  oy® or° dx”

VAV =

Therefore this function dose not satisfies Laplace’s equation. Hence, to determine
the charge density for this potential function, the following step must be done:

Ez—?V:—(a—V éx+8_Véy+8_V 4,) == E=-10x4,
OX oy 0z
- _ . - ob,6 oD
D=¢ E=-10x¢,a, and p, =V-D:a —- y+8DZ
OX oy 0z

p,=—10¢ +0+0 == p,=-10¢,

Or it can be obtain the same result from the application of Poisson’s equation:

v/ =——2 and from Laplace's equation we have V*V =10 then
go

10= -2 == p, =-10 ¢,
go



Home Work

2 2 2
oy 1/2/+18W+ 126 l/:+a l/,:+10=0
op° pop p°o¢° oz

Laplace’s equatuion Helmholtiz Equation Poisson’s Equation Maxwell’s Equation

Q2/ Which of the following potential does not satisfy Laplace’s equation:

a. v=2+5 | b. V=10xy [C. V=rcse |y v 10 e. V=pcosg+10

r

Q3/ Solve the poison’s equation in free space and in cartesian coordinates for

. 1
0<x<lm if p,=10"° (2+sinzx) (C/m’) and V=0at x=0 and x=1alsofindVv atx=7

Q4/ Letv = Axtyz+B (Volt), find A and Bif © a. V =0 atthe origin and V =100volt at (2,-15)

?
b. v =0 atthe origin and |E| =20(V/m) at (2,-15) C. V =100 (Volt) at the origin and V =0 at (2,—-15)

Q./ For the following potential functions, use the gradient equation to find the E.D and p, in free space:

-V:x+y2z - V =p?sing -Vzrsine COS ¢



