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Another way of obtaining (     ) is from the electric scalar potential ( V ) to be 

defined in this section. In a sense, this way of finding (      ) is easier because it 

is easier to handle scalar function than vectors. 

       

In this section we develop the concept of electric potential and show its 

relationship to electric field intensity. When force is applied to move an object, 

work is the product of the force and the distance the object travels in the 

direction of the force. Mathematically, in moving the object from point ( a ) to 

point ( b ), the work can be expressed as: 

E


3-8: Electric Potential:     

                                           Form our discussion in the preceding sections; the 

electric field intensity (    ) due to a charge distribution can be obtained from 

Coulomb’s Law in general or from Gauss’s law when the charge distribution is 

symmetric. 
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We know from Coulomb’s law that the force exerted on a charge ( Q ) by an electric field (    ) 

is ( F=Q E ). Thus, the work done by the field in moving the charge from point ( a ) to point  

( b ) is then:     

If an external force moves the charge against the field, the work done is negative 

of  fieldEW   or: 
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Dividing ( W ) by (Q) in eq.(3), gives the potential energy per unit charge. This 

quantity denoted by ( Vab ), is known as the potential difference between points 

( a ) and ( b ). Thus: 
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, and have the following properties:  

(1).  
abV is independent of the path taken, 

(2).  
abV  is measured in unit of (J/C) or  volts (V) 

(3). In determining  
abV  , ( a ) is the initial point while ( b ) is the final point.   
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Electric potential difference: is defined as the work done by an external force to 

move a charge from point ( a ) to point ( b ) in an electric field divided by the 

amount of charge moved, and it related to absolute potential or electrostatic 

potential as : 
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Absolute potential: is defined as a potential at which the reference point is taken at 
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Equation (7) is also called Kirchhoff’s voltage law. Physically this equation 

means that no net work is done in moving a charge along a closed path in an 

electrostatic field.  Applying Stokes’s theorem we get: 
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and hence:  

It is interesting to see that, if a closed path is chosen the integral will return 

zero potential differences: 



Eq.(8) is called second Maxwell’s equation in point form and in static electric 

field. This equation physically means that the electrostatic field is a 

conservative or ir-rotational field. 
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Thus the potential difference (     ) may be regarded as the potential at ( b ) with reference 

to    ( a ). For point charge, it is customary to choose infinity as a reference that is we 

assume the potential at infinity is zero. Thus if (  

)( rrb then the potential at any point  due to a point charge ( Q ) located at the origin 

is given by: 



Example(1): A total charge of ( Q ) is uniformly distributed around a circular ring of radius 

(). Find the potential at a point on the axis (h) m from the plane of the ring. Compare with 

the result where all charge is at the origin in the form of a point charge. 
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Example(2): A total charge of ( Q ) is uniformly distributed over a circular disk of radius 

(). Find the potential at a point on the axis (h)m from the plane of the disk.  
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Example(3): Find the work done in moving    charge from point  

 to the origin in a field:  ? 
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Example(4):Find the difference in the amounts of work required to bring a point 

 from infinity to   and from infinity to   in the field:  charge  
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Example(5):In spherical coordinate, point   is at a radius of  , while point  

 is at radius  . Given the field  find the potential at point  

, assume zero reference  at infinity and then find  
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3-9: Gradient of Potential Difference:     

                                                              From the defining equation for potential 

difference ( 
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Thus, the maximum derivative is in a direction opposite to ( ) and is equal to the 

When ( V ) is a function of  , then the eq.(3) becomes: magnitude of (     ) 
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Physically the (-) minus sign in eq.(4) indicates that the electric field intensity (      

is pointing in the direction of decreasing potential ( V ).  

 

 

Or it means that the electric field intensity (     ) is directed from the higher to 
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Example(6): consider a pair of charge points of equal magnitude and opposite sign, (+Q) 

and (-Q) and separated by a small distance (d) as shown in figure below, such a pair 

termed an electric dipole. Find an expression for the electric field intensity and potential 

field of such a dipole at a distance ( r ) that is large compare to the charge separation ( d ). 
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Therefore eq.(1) can be reduced to: 
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P ): The displacement of the electric charges due to an external electric field is 

called electric dipole moment.  
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Therefore, the electric field intensity for electric dipole is given by:  
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 (1). For point charge ( monopole):  
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From these two set of equation we notice that the (     ) varies inversely with ( r2) and ( V )  

varies inversely with ( r ) for monopole. While for dipole (   ) varies inversely with ( r3 ) and  

 ( V ) varies inversely with ( r2 ). 

     

Therefore, the electric field intensity (    ) due to successive higher order multipoles [such 

as quadrapole (two dipole) or octapole (two qudrapole)] are vary inversely as r4, r5, r6…..  

and (V ) vary inversely with r3, r4, r5 ……. 
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Example(7):In the potential field                  , how much charge is located within a unit 

sphere centered at the origin ? 

25rV 

The electric field intensity is related to the electric potential through the gradient 

equation as: 
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Example(8): A disk of                                                        , carries a surface charge density of  ,                                        

                                            find                         in free space? 
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Solution: 

For a disk or sheet of charges the electric potential field is related to charge 

density by the following equation: 
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Substituting these identity into eq.(4) we get: 
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Home Work 

Q1/ Find  QandDE v ,,, 


 for each of the following potential difference fields: 

27 xV   cos2V sin
5

r
V a-  b-  c- 

  . 

Q2/ For each of these potential fields, find  vandDEV ,,,


 at (2,-2,2): 

43  zyxV zeV  sin5  sinsin
4

r
V a- b-  c-  

  . 



56 r
V


 mr 1

Q3/ How much charge must be located within a unit sphere centered at the origin in order to produce the potential  

field  , for   ? 

)(a )/(
1 2mCs


  ),0,0( h
Q4/ A circular disk of radius   carries charge density  . Calculate the electric potential at  ? 

)/(100 2mnCs  nCQ 2

mBtomA )0,3,2()2,10,5( ABV

Q5/ A sheet of charge density   occupies the x-z-plane at y=0. Find the work required to move a  

charge from  , then evaluate electric potential difference   ? 

01)/(21  andmratmmvEandcmd




902  andmratE

Q6/ For the electrostatic dipole moment, given that  
. Find  

 ?  
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Q7/ Find the work done in moving a point charge   from the origin to   in the field:  

 along the path   ?   Ans. (1.6 mJ) 

mformVaE 20)/(ˆ
5

 






mformVaE 2)/(ˆ5.2  


ABV VAnsBandA 47.8.?)0,0,4()0,0,1(

Q8/ Given the cylindrical coordinate electric fields as:      and   

. Find the potential difference   for  

. 



3-10: Energy and Energy Density in Electrostatic Field:     

                                                                                             To determine the energy 

present in an assembly of charges, we must first determine the work necessary to 

assemble them. Suppose we wish to position three point charges                   in an 

initially empty space as shown in figure.  
321 , QandQQ

P1 

P2 

P3 

Q1 

Q2 

Q3 

 

(1). No work is required to transfer ( Q1) from infinity to ( P1 ), because the space is 

initially charge free and there is no electric (         ) field and hence:  

  
0E
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)4()(0321 32313212  VVQVQWWWWE

)3()(3 32313  VVQW

)(,)2(2 1221212 QtodueVmeansVwhereVQW 

Therefore, the total work done in positioning the three charges is: 

(3)Similarly, the work done in positioning ( Q3 ) at ( P3 ) is equal to : 

(2).The work done in transferring ( Q2 ) from infinity to ( P2 ) is given by: 

Now, if the charges were positioned in reverse order; then the total work is given by: 
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Adding eqs.(4) with (5) we get: 

)6()(
2

1

2

1

2

1

2

1

)()()(2

332211332211

323132321113121





VQVQVQVQVQVQW

VVQVVQVVQW

E

E

Where, ( V1 , V2 and V3 ) are total potential at points ( P1, P2 and P3 ), 

respectively. In general, if there are ( N ) point charges, then eq.(6) can be 

written as: 
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However, if instead of point charges, the region has a continuous charge 

distribution, the summation in eq.(7) becomes integration; that is: 
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Since,  D

v , so eq.(10) can be further developed to yield: 
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, we have the following identity: 
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Applying the identity given in eq.(12) on to eq.(11) we get: 
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And according to divergence theorem we can rewrite the eq.(13) as given below: 
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Since ( V ) varies inversely as ( r ) and ( D ) varies inversely as ( r2 ) for point charges; and        

( V ) varies inversely as ( r2 ) and ( D ) varies inversely as ( r3 ) for dipoles and so on. 

Hence,           in the first term of the right hand side of eq.(14) must vary inversely at least 

as ( r3 ) while ( ds ) varies directly as ( r2 ). Consequently, the first integral in eq.(14) must 

tend to zero as the surface ( S ) becomes large. Thus, eq.(14) reduces to:  
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Therefore, the total energy stored in electrostatic field can be finally simplified to: 
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For this we can define electrostatic energy density                             as:   )/( 3mJouleinwE
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Hence we can say that the electrostatic energy is given by:  
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Example(9):Given  

, find the electrostatic potential energy stored in a volume defined by:   

Solution: 

The electrostatic energy stored in this field bounded by these regions is 

calculated as follows: 
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3-12: Derivative of Poisson’s and Laplace’s Equations:     

                                                                                            To derive the Poisson’s 

and Laplace’s equation which are useful for determining the electrostatic 

potential ( V ) in regions at whose boundaries ( V ) is known. The following 

steps give these two equations: 

ED



v D

With ( ), the differential form of Gauss’s law given by: (  ) may be written as: 
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 vv VV


Thus,  

Equation(3) is called Poisson’s equation for a volume (v) containing a volume 

charge density (v), the solution for ( V ) in eq.(3) is given by: 
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If the system or medium under consideration contains no free charges (  0v ), then eq.(3) reduce to: 
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Equation (5) is called Laplace’s equation and in Cartesian, cylindrical and 

spherical coordinates is given by: 
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Example(10) A potential field is described by,                  is Laplace’s equation satisfied? 

If not , find the charge density in the region?  
)(5 2 VoltxV 

Solution: 

In order to satisfy Laplace’s equation for given function, it must be:  02  V
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Therefore this function dose not satisfies Laplace’s equation. Hence, to determine 

the charge density for this potential function, the following step must be done: 
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Or it can be obtain the same result from the application of Poisson’s equation: 
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Home Work 

Q1/ In cylindrical coordinates, equation:  010
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 is called: 

a. Laplace’s equatuion          b. Helmholtiz Equation       c. Poisson’s Equation        d. Maxwell’s Equation 

Q2/ Which of the following potential does not satisfy Laplace’s equation: 

52  xV yxV 10 cosrV 
r

V
10

 10cos  Va. b.  c.  d.  e.  

Q3/ Solve the poison’s equation in free space and in cartesian coordinates for  

100)/()sin2(1010 39   xandxatVandmCxifmx v  also find  
2

1
xatV

Q5/ For the following potential functions, use the gradient equation to find the  vandDE 


,  in free space: 

zyxV 2  sin2V  cossinrV a.  b.   c.  

)(2 VoltBzyxAV  BandA
)5,1,2(1000  atvoltVandorigintheatV

)5,1,2(0)(100  atVandorigintheatVoltV)5,1,2()/(200  atmVEandorigintheatV

Q4/ Let   , find   

b.  c.  

a.   if : 
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