
Chapter Four /// Part (III) 

Electrostatic Field in Material 

Space & Boundary Conditions 



4-8: Linear, Isotropic and Homogenous Dielectrics: 

                                                                                            The dielectric material 

mediums are classified as linear, isotropic and homogenous according to the 

following properties: 
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(3). The dielectric material is said to be Isotropic, when ( 
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4-9: Capacitance ( C ): 

                                           The capacitance of a capacitor is defined as the ratio 

of the magnitude of the charge ( Q ) on one of the plates to the potential 

difference ( V ) between them; that is: 
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Generally, to have a capacitor we must have two or (more) conductors carrying 

equal but opposite charges. The conductors are some times referred to us the 

plates of the capacitor. The plates may be separated by free space or by a 

dielectric material.  
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From eq.(1), if we have a parallel plates of uniform cross sectional area ( A ) 

and separated by ( d ), the capacitance is now given by: 

Also we have the resistance ( R ) of a plate of conductor given by:  
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Comparing eq.(1) with eq.(3) we obtain a relationship between resistance and 

capacitance as given below: 
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The capacitance ( C ) is a physical property of the capacitor and it measured in 

Farad ( F ). Employing eq.(1), the capacitance of any given tow parallel arbitrary 

plate shapes can be obtained, using either one of the following methods: 
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(1). Assuming ( Q ) and determining ( V ) in terms of ( Q ) [ Gauss’s law] 
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(2). Assuming ( V ) and determining ( Q ) in terms of ( V ) [ Laplace’s equation] 
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(a). show that the capacitance of Figure(a) is given by:  
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(a). because the ( D ) is common for both dielectrics, and is given by:  
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Example (6): Find the capacitance and electrostatic energy stored between the 

parallel plates of area ( A ) and the plates are separated by a distance ( d ) and 

filled with a dielectric material of permittivity (     )  

Solution: 

From the mathematical definition of the uniform cross sectional area of a plate 

of capacitance we have: 

d

Ar

L

S

E

E

dlE

dsE

V

Q
C


















hence  

d

Ar C

The electrostatic energy stored in a region of charges is calculated through a 

following relation:       
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Or in another way, the electrostatic energy stored in this region is calculated as: 
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For the calculation of the resistance, we have a relationship between the 

capacitance and resistance, as given below: 
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
Example (7): Find the capacitance and resistance between two concentric 

spherical conductors of conductivity (     ), and with the inner and outer radius 

of ( a ) and (b ) respectively. 

Solution: 
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This type of calculation is called ( Q- method). But when finding ( V ) through 

Laplace’s equation and then finding ( Q ) is called ( V-method). 
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Example (8): Find the capacitance and resistance of a coaxial capacitor of 

length ( L ) and conductivity (   ), where the inner conductor has a radius of ( a ) 

and outer conductor has a radius of ( b ). 

Solution: 
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 90Example (9): A metal bar of conductivity (     ) is bent to form a flat (    ) sector of 

inner radius ( a ) and outer radius ( b ), and thickness ( t ), then show that: 
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 (b). The resistance between the two horizontal surfaces at 

is given by:  
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Hence, according to equation (1), the resistance between the two vertical 

surfaces of this metal bar is: 
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And according to equation (1), the resistance between the two  horizontal 

surface of this metal bar is: 
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Example (10): A coaxial cable contains an insulating material of (1 ) in its upper 

half and another material of conductivity (2 ) in its lower half. If the radius of the 

center wire is (a) and that of the sheath is (b), then show that the leakage 

resistance of length (L)  of the cable is:           
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According to eq.(1) the resistance is given as:                             
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Home Work 

mS /103 4 cmllengthandmmr 85 

voltV 9

Q1/ If the ends of a cylindrical bar of Carbon with   of radius   

 are maintained at a potential difference of  

a. The resistance  of the bar                b. The current through the bar                   c. The power dissipated in the bar 

, find : 

r




 v

Q2/ For a coaxial cable of inner conductor radius  ( a ) and outer conductor radius ( b ) and a dielectric  

 in between, assume a charge density   

to derive an expression for  V  and  E-field and calculate surface charge density on each plate? 

 is added in the dielectric region. Use Poisson equation 

Q3/ A conical section of material extends over the range  )/(02.030092 mSandforcmrcm   

if conductive plates are added at each radial end of the section. Determine the resistance and  

capacitance of the section? 
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
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Q4/ A spherical capacitance has inner radius  ( a )  and outer radius ( b ) and filled with an  

 

inhomogeneous dielectric with   , show that the capacitance of the capacitor is given by:  



Q5/ If the earth is regarded as a spherical capacitor, what is its capacitance? Assume the radius of the  

earth to be approximately   Kmr 6370   ?   Ans.   C = 0.7078  mF 

Q6/ Find the capacitance and resistance of a coaxial capacitor of length (L) and conductivity ( σ ), 

where the inner conductor has radius ( a ) and the outer has a radius ( b ) ?? 

Q7/ Find the capacitance and resistance between two concentric spherical conductors of 

conductivity (σ ), where the sphere has an inner radius of  ( a ) and outer radius of ( b ) ?? 

1

2

)(

ln

21  











L

a

b

R

Q8/ A coaxial cable contains an insulating material of conductivity  

material of conductivity  in it’s lower half. If the radius of the center wire is ( a ) and that of the 

 in it’s upper half and another 

sheath is ( b ), show that the leakage resistance of length ( L ) of the cable is:  



4-10: Boundary Conditions: 

                                                     So far we have considered the existence of the 

electric field in a homogeneous medium. Now, if the field exists in a region 

consisting of two different media, the conditions that the field must satisfy at the 

interface separating the media are called boundary conditions. The conditions are 

helpful in determining the field on one side of the boundary if the field on the other 

side is known. We shall consider the boundary conditions at an interface separating, 

1r 2rdielectric ( ) and dielectric (       )  

conductor and dielectric 

 

conductor and free space 

To determine the boundary conditions, we need to use Maxwell’s equation for 

electric and magnetic fields: For static electric field we have two equation of 

Maxwell, they are: 
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Also we need to decompose the electric field intensity into two orthogonal 

components; they are as follows: 
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4-10-1: Dielectric-Dielectric Boundary Conditions: 
                                                                                            Consider the ( 

of two different dielectrics, characterized by: ( ), then: 

) exist in a region consist 

)1(111  nt EEE
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From the figure (A) closed path (abcda) we can infer that:  
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At (  0h ), at the interface between two media, then: 

)4(0  
a

d

c

b

dlEdlE


)5(0  
d

c

b

a

dlEdlE


thus,  
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Hence, from eq.(5) we can obtain:  
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Since,    therefore, 

From figure (B), we have:          )8(  enc
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0hAt (  ), at the interface between two media, then:      
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If (  ) at the interface, then:  and we have 

Therefore,    
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, and obtaining the following relations: 
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According to the figure shown below and eq.(6) we can evaluate the angle of 

incidence and refraction between these two interfaces as given below: 

 tt 21 EE


)13(sinsin 2211   EEhence, 

Also from eq.(12), we can write: 
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hence, 

  

Dividing eq.(13) by eq.(14) we get: 
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hence,  

Eq.(15) is the law of refraction of the electric field at the boundary free of charge (           ). 

Thus, an interface between two dielectrics produces bending of the flux lines as a result 

of unequal polarization charges that accumulate on the sides of the interface. 
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4-10-2: Conductor-Dielectric Boundary Conditions: 

                                                                                        The conductor is assumed 

to be perfect ( i.e. ). Although, such a conductor is not practically 

realizable, we may regard conductors such as Copper and Silver as though 

they were perfect conductors. 

To determine the boundary conditions for a conductor-dielectric interface, we 

follow the same procedure used for dielectric-dielectric interface except that we 

incorporate the fact that inside the conductor  0E

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Dielectric 
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At (  0h ), at the interface between two media, then: 
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Applying:          we  get:  
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Thus, the boundary conditions for conductor-dielectric boundary conditions are: 
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Thus, under static conditions, the following conclusions can be made about 

a perfect conductor: 

(1). No electric field may exist within a conductor; that is ( 00  E


andv  ). 

(2). Since (  0 V


E

in the conductor, that is; conductor is an equipotential body.   

), so there can be no potential difference between any 

two points 

(4). An important application of the fact that ( 0E


electrostatic screening or shielding. 

) inside a conductor is in 

(3). The electric field intensity can be external to the conductor and normal to  

       its surface; that is: 
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4-10-3: Conductor-Free space Boundary Conditions: 

                                                                                                      This is a special 

case of the conductor-dielectric boundary conditions, by replacing (               ) 

because a free space is a special dielectric medium for which ( 

the boundary conditions are: 

). Thus, 

snntt and   EDED


 0   

It should be noted that these equations implies that ( fieldE


a conducting surface normally. 

) must approach 
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Example(11): Two extensive homogenous isotropic dielectrics meet on plane (  

). A uniform electric field ( )  exist for ( ), then find: 

02 zforE


21 EE
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and

(a).  

(b). The angles ( 

(d). The energy within a cube of side ( 2 m ), centered at point (3,4,-5). 

) makes with the interface 

(c). The energy densities in ( J/m3) in both medium. 
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

(a).  ?    

             

2211 9090    and






1.299.60
3

29
tan 11

1

1

1  
n

t

E

E

                    3929425 11  nt and EE


(b).  41629425 22  nt and EE







6.364.53
4

29
tan 12

2

2

2  
n

t

E

E

According to the boundary conditions: 
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n â3

3

4
21

2

1
2 EEE






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The energy densities are given by:     
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At the center (3,4,-5) of the cube of side ( 2 m)  (  

in the region (2) and:   (  ), hence: 

(d). ), that is the cube is 



Home work 
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Q1/ Two extensive homogeneous isotropic dielectrics meet on plane  . For  

. A uniform electric field  

 exists for  , then find: 

02 zforE


a.  The angles  
21 EandE


 makes with the interface ? b. 

The energy densities in ( J/m3) in both medium? c. 

The energy within a cube of side  ( 2 m)  centered at (3,4,-5)? d. 
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 and the energy density in both region? 
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Q2/ For   at    

, if  , then find? and21122 ,,,, PPDDE


21 EandE


the angle which makes  

with the interface 


