Chapter Four /// Part (lll)

Electrostatic Field in Material
Space & Boundary Conditions



4-8: Linear, Isotropic and Homogenous Dielectrics:

The dielectric material
mediums are classified as linear, isotropic and homogenous according to the
following properties:

(1). A dielectric material is said to be linear, when, at a given point, (€ )is a
constant. Thus a plot of || versus [B will be a straight line. If the permittivity,

at a given pointis a function of ‘E‘ 5=e(‘E‘) , then the material is non-linear

and a plot of [B|versus [E| will not be a straight line.

(2). A dielectric material is said to be homogenous when (€ ) does not vary from
point to another; thus (¢ )is not a function of position. If the permittivity varies
with position [ g=g(x,y,z) ], then the material is called non-homogenous.



(3). The dielectric material is said to be Isotropic, when (P,E and D) are in the
same direction, thatis:P,=¢. x.E, , P,=¢. x.E, P,=¢& z.E,and -

- and _ . A non-isotropic dielectric materials are those

in which the P,E and D are not in the same direction, while have a tensor
extension as given below:




4-9: Capacitance ( C):

The capacitance of a capacitor is defined as the ratio
of the magnitude of the charge ( Q ) on one of the plates to the potential
difference (V) between them; that is:

Surface S

Generally, to have a capacitor we must have two or (more) conductors carrying
equal but opposite charges. The conductors are some times referred to us the
plates of the capacitor. The plates may be separated by free space or by a
dielectric material.



From eq.(1), if we have a parallel plates of uniform cross sectional area (A)
and separated by (d ), the capacitance is now given by:

¢ {E-ds
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Also we have the resistance ( R) of a plate of conductor given by:

Comparing eq.(1) with eq.(3) we obtain a relationship between resistance and
capacitance as given below:




The capacitance ( C) is a physical property of the capacitor and it measured in
Farad ( F ). Employing eq.(1), the capacitance of any given tow parallel arbitrary
plate shapes can be obtained, using either one of the following methods:

(1). Assuming ( Q) and determining (V) in terms of ( Q) [ Gauss’s law]

Q=¢ E.ds

S

(2). Assuming ( V ) and determining ( Q) in terms of (V) [ Laplace’s equation]

V&V =0



Example (5): e & c. &

(a). show that the capacitance of Figure(a) is given byC = rld° A + rzdo - =C, +C,
1 2
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(b). show that the capacitance of Figure(b) is given by:E =

Solution:
(a). because the (V) is common for both dielectrics, then:
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The total charge: Q@ =pa ATt oy A, = e (A s, +A s,)
Therefore, the total capacitance is now given by: . . -
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(a). because the (D) is common for both dielectrics, and is given by:

D, :gén and E = b . Therefore,
g
E-_9 4 and E -9 3
Ac g, Ac ¢,
(a)
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Since, V=kEd hence, V, =E,d, = Q 4 and V, =E,d, = Q4
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But the total voltage across the two capacitance is given by:
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Therefore, the total capacitance now is given by: ’
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Example (6): Find the capacitance and electrostatic energy stored between the
parallel plates of area ( A) and the plates are separated by a distance (d ) and
filled with a dielectric material of permittivity (&€ )

Solution:

From the mathematical definition of the uniform cross sectional area of a plate
of capacitance we have:
e
ng _&, & EA hence C—g"grA
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The electrostatlc energy stored in a region of charges is calculated through a

following relation: -
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Or in another way, the electrostatic energy stored in this region is calculated as:

- D
W =%jD-Edv:%ng2dv and we have, E=;=%

1 Q? 1 Q*Ad 1Q°d A
We = —¢ dv=—¢ == and C=—
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Hence, WE=1Q—=1 QV=1CV2
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For the calculation of the resistance, we have a relationship between the

capacitance and resistance, as given below:




Example (7): Find the capacitance and resistance between two concentric
spherical conductors of conductivity ( o ), and with the inner and outer radius

of (a) and (b ) respectively.

Solution: o
Since the capacitance is given by: C=v and the charge consists with this

defining region is calculated by using Gauss’s law as:

2rr

Q= ffE ds = 8”Erar r’sin@do dgp & =E, (4zer?) hence, E-= Q -4, ———(1)
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Since, C=% , therefore, the capacitance of this configuration is:
: , E &
and the resistanceis; RC=—=—>>=
o oC

This type of calculation is called ( Q- method). But when finding (V) through
Laplace’s equation and then finding ( Q) is called ( V-method).



Example (8): Find the capacitance and resistance of a coaxial capacitor of
length (L) and conductivity (), where the inner conductor has a radius of (a)
and outer conductor has aradius of (b).

Solution:

f
[E-di

L

We have: C = 8 then the value of ( Q) is calculated through the use of

27l

Gauss’s law as: Q = § ” A -pdpdza, == Q=E, (27 e plL) and hence,
S 00
_ Q . .-~ & Q i Q [ a:|
E: a = — . = |— . V:_ In
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Q b - Q 2relL
szﬁg L In 4/ Thus the capacitance of coaxial capacitor is: szzln(b/a)

Therefore, the resistance can be calculated from the equation:
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Example (9): A metal bar of conductivity ( O) is bent to form a flat (90°) sector of
inner radius (a) and outer radius ( b ), and thickness (t), then show that:

(a). The resistance of the bar between the vertical curved surface at p=a and p=b

IS given by: 2 In(bj
R a
ont

(b). The resistance between the two horizontal surfacesat z=0 and z=t

is givenby: p__ 4t
orx (b*—-a’)
Solution: B
~-[E-d
(a). we have: R=—"——=--——--———- 1)
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Hence, according to equation (1), the resistance between the two vertical
surfaces of this metal bar is:
b
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And according to equation (1), the resistance between the two horizontal
surface of this metal bar is:
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Example (10): A coaxial cable contains an insulating material of (1) in its upper
half and another material of conductivity (62 ) in its lower half. If the radius of the
center wire is (a) and that of the sheath is (b), then show that the leakage

resistance of length (L) of the cable is: b
M)
Solution: ~zL(o,+0,)
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According to eq.(1) the resistance is given as: R =V = In(b/a)

| 7zl(o,+0,)

. . . &
And the capacitance is evaluated by the equation: RC=— but -

O




Home Work

Q,/ If the ends of a cylindrical bar of Carbon with o=3x10* S/m of radius r=5mm and length |=8cm

are maintained at a potential difference of v =gvolt » find:

a. The resistance of the bar b. The current through the bar C. The power dissipated in the bar

Q,/ For a coaxial cable of inner conductor radius (a) and outer conductor radius (b ) and a dielectrice,

in between, assume a charge density p, = pﬁ is added in the dielectric region. Use Poisson equation

to derive an expression for V and E-field and calculate surface charge density on each plate?

Q,/ A conical section of material extends over the range 2cm<r<9cm for 0<#<30° and &=0.02(S/m)
If conductive plates are added at each radial end of the section. Determine the resistance and
capacitance of the section?

Q,/ A spherical capacitance has inner radius (a) and outer radius (b ) and filled with an

inhomogeneous dielectric with  ¢=¢, —
r



Q/ If the earth is regarded as a spherical capacitor, what is its capacitance? Assume the radius of the
earth to be approximately r=6370 Km ? Ans. C=0.7078 mF

Q¢/ Find the capacitance and resistance of a coaxial capacitor of length (L) and conductivity ( o ),
where the inner conductor has radius (a) and the outer has aradius (b ) ??

Q,/ Find the capacitance and resistance between two concentric spherical conductors of
conductivity (o ), where the sphere has an inner radius of ( a) and outer radius of (b ) ??

Qg/ A coaxial cable contains an insulating material of conductivity o, in it’s upper half and another

material of conductivity o, in it’s lower half. If the radius of the center wire is ( a ) and that of the
a

sheath is (b ), show that the leakage resistance of length (L ) of the cable is: |n(bj
- L7z (o, +0,)




4-10: Boundary Conditions:

So far we have considered the existence of the
electric field in a homogeneous medium. Now, if the field exists in a region
consisting of two different media, the conditions that the field must satisfy at the
interface separating the media are called boundary conditions. The conditions are
helpful in determining the field on one side of the boundary if the field on the other
side is known. We shall consider the boundary conditions at an interface separating,

»dielectric (&) and dielectric (&, )

wconductor and dielectric

®conductor and free space

To determine the boundary conditions, we need to use Maxwell’s equation for

electric and magnetic fields: For static electric field we have two equation of
Maxwell, they are:

E.-dl =0 == VxE=0 _4 :f = Q. == V-D=p,

Also we need to decompose the electric field intensity into two orthogonal
components; they are as follows:

— — — —

tan gential + Enormal :Et + En and’ D — D ial + D D Dn

tan gentia

E=E

normal ~—



4-10-1: Dielectric-Dielectric Boundary Conditions: —
Consider théX(~ fleld ) exist in a region consist

of two different dielectrics, characterized by: (g1 =&, & and E, =&, &,, ) then:

From the figure (A) closed path (abcda) we can infer that:




At (h—0), at the interface between two media, then:

[E-di=[E-di =0
b d

At (h— 0), at the interface between two media, then:




Q.. = §D-ds+ ifD'dS =D,,As-D,,As  and also we have, QenC = P, AS

top bottom

If (p, =0) at the interface, then: _ and we have D=¢E

, and obtaining the following relations:




According to the figure shown below and eq.(6) we can evaluate the angle of
incidence and refraction between these two interfaces as given below:

- -_

E,=E, == hence, E;sIn@, =E,sinf, ———————— (13)

Also from eq.(12), we can write:

Dividing eq.(13) by eq.(14) we get: i

x-v plane

hence,
tand, ¢,
tand, ¢,

Eqg.(15) is the law of refraction of the electric field at the boundary free of charge - ).
Thus, an interface between two dielectrics produces bending of the flux lines as a result
of unequal polarization charges that accumulate on the sides of the interface.



4-10-2: Conductor-Dielectric Boundary Conditions:

The conductor is assumed
to be perfect ( i.e. 6—>x). Although, such a conductor is not practically
realizable, we may regard conductors such as Copper and Silver as though
they were perfect conductors.

To determine the boundary conditions for a conductor-dielectric interface, we
follow the same procedure used for dielectric-dielectric interface except that we
incorporate the fact that inside the conductor E=0

Medium 1
E A Conductor

Dielectric €,




Applying: §E —(E-d+[E-di+[E-d+[E-di=0
C

m'—.c'
c-'—.o
o'—,c:.
ov—.o.

At (h—0), at the interface between two media, then:
JEd
b

d
But inside the conductor E=0Q , thus: _[E-d|=0

and, j j‘E di=0

Q.!—-.g_)
II

b
Therefore, _[E d And hence, E, =0 and hence, D,=0—————— (2)
a
—~— D, =p, and hence, E =S 3)
g, &,

Thus, the boundary conditions for conductor-dielectric boundary conditions are:




Thus, under static conditions, the following conclusions can be made about
a perfect conductor:

No electric field may exist within a conductor; that is (o, =0 and E=0 ).

Since (E=-Vv=0 ), so there can be no potential difference between any
two points in the conductor, that is; conductor is an equipotential body.

The electric field intensity can be external to the conductor and normal to
its surface; that is:

D, =¢. &, E, =0 and D.=c ¢ E. =p,

An important application of the fact that (E=0) inside a conductor is in
electrostatic screening or shielding.



4-10-3: Conductor-Free space Boundary Conditions:
This is a special
case of the conductor-dielectric boundary conditions, by replacing ( g, N

because a free space is a special dielectric medium for which (éx=1). Thus,
the boundary conditions are:

It should be noted that these equations implies that ( E - field) must approach

a conducting surface normally.

Example(11): Two extensive homogenous isotropic dielectrics meet on plane (z=0, for z>0 ¢, =4
and for z<0, &, =3). Auniform electric field (E=54, —24, +34,) Kv/mexist for ( 220), then find:

@. E, for z<0
(b). The angles (E, and E, )makes with the interface

(c). The energy densities in (J/m3) in both medium.

(d). The energy within a cube of side (2 m ), centered at point (3,4,-5).



Solution: E, for z<0 ?

E,=E,+E,, and E,=E,+E, E,=E,=54,24, and E, =34,

According to the boundary conditions:

- E - = 4 . — A A — = -
E2n - = Eln —>= Ezn :§ x3d, =>= Ezn =4 4 and E2 :E2t +E2n

Hence, BE; =9@, =2 a, +4 &,

=

=49 =3

=J25+4=429 and [E,

_ /16 =4 ‘Elt‘:\/25+4:\/29 and ‘Em

a,=90°" -6, and a,=90"—6,

tan =?” = ‘/39 == 6, =60.9" == a, =29.1
1n

tang, =1 = \/szg == 0,=534" =>= o, =36.6"
2n




The energy densities are given by:

At the center (3,4,-5) of the cube of side (2 m) (z2=-5<0), that is the cube is

in the region (2) and: (2<x<4 3<y<5 and -6<z<-4), hence:




Home work

Q,/ Two extensive homogeneous isotropic dielectrics meet on planez=0 . For

. R, . . ~ | KV
220, ¢, =4 and for z<0, ¢,=3 . Auniform electric fieldE = (54, -2a, +34a,)—

m
exists for Z2>0, then find:;

- E2 for z<0 . The angles El and EZ makes with the interface ?

.The energy densities in (J/m3) in both medium?

. The energy within a cube of side (2 m) centered at (3,4,-5)?

Q,/ Fory<0 ¢g,=4 and E1=3éx+67zéy+4éz \V/m), at y=0 p, =025 (nC/m?)
if &, =5 for y>O . then find? Epf)z’f)l,lsl, I32 and the angle which makes
' r

—

E, and E, with the interface

Q./ Region Z < Qcontain a dielectric for whichén = 2.5while region Z > 0is characterized by

£,=4 .Let E, =-304,+504,+704, (V/m), thenfind: E, , D, D, , B , P,

and the energy density in both region?



