
7-7 :  Ampere's Law  

The line integral of the tangential component of ( H )around any closed path is 

the same as the net current ( Inet ) enclosed by the path and mathematically 

expressed as: 
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According to Ampere's law, equation (1) has the following values for each of the  

above figures: 
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By applying the Stoke's theorem to the left hand side of eq.(1) we obtain: 
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Substituting eq.(2) and eq.(3) into eq.(1) we get: )4( JH


This equation is called 3rd –Maxwell's equation or point form of Ampere's law 

which indicates that : [ The magnetostatic field is a non-conservative field ] or [ 

The magnetic field is produced due to a flow of steady current ].  



7-7: Application of Ampere's Law 

We now applying Ampere's circuit law to determine ( H ) for some symmetrical current 

distributions as we done for Gauss's law. We will consider an infinite line current, an 

infinite current sheet and an infinity long Coaxial transmission line.  

7-7-1: Infinite Line Current: 
Consider an infinitely long filamentary current ( I ) along the z-axis as shown below. To 

determine ( H ) at an observation point out side and inside the wire  , we allow a closed 

path passes through both regions  . These paths on which Ampere's law is to be 

applied, is known as an Amperian path [ Analogous to term of Gauss's Surface ].  
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7-7-2: Infinite Sheet Current: 
We consider an infinite sheet current at the Z= 0 –plane. If the sheet has a uniform current density  
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rectangular closed path [Amperian path] of length ( b ) and width ( a ), gives: 

. To determine the magnitude of ( H ), applying Ampere's law by considering a 
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Applying Ampere's law to this path, we obtain: 
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Where, ( an ) is a unit vector at the surface current and is directed to the region 

where (H) is being found. 

 

Or: ( an ) is a unit normal vector directed from the current sheet to the point at 

which the magnetic field intensity is measured. 

Where the integral   
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HH  are zero, since ( H ) is perpendicular to ( dl ).  

Then eq.(3) reduces to: 



Example(4): Plane  my 5 carries a sheet current of   mmAax /ˆ20K


, while plane  

my 5 , carries a current sheet of  mmAax /ˆ20K


intensity in all regions surrounding these two sheet currents. 

. Find the magnetic field 
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Solution: 

( 2 ): Region  y ≤ - 5 
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( 3 ): Region  5 ≥ y ≥ - 5 
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Example(5): Plane  10x  carries sheet current(  axiszalongmmA  /10K ), while  

2,1  yx carries filamentary current (  mA20I  ) along  axisz 

. Determine the magnetic field intensity ( H ) at  )2,3,4( . 

y 

K=10az mA/m 

z 

P(4,3,2) 

x 

I= 20 π  mA 
Solution:  

(1): The magnetic field produced at point (4,3,2)  

due to the sheet current can be calculated as: 
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(2): The magnetic field produced at point (4,3,2)  

due to the filamentary current can be calculated as: 
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Substituting these quantities into eq.(2) and making some algebraic arrangement  

we get: 
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adding eqs(1) with (3) we get the total magnetic field intensity: 



Example(6): Two circular filamentary loop are located at  )20,( mzandzar 

Find the magnetic field intensity ( H ) at the midway between the circular loops if the loop which 

mz 2 , carries a current of ( 2 A ) in the  directiona  
ˆ  and that located at  0z

 is in the : 

(1)-   directiona 
ˆ                (2)-  directiona  

ˆ

 located at 

The magnetic field intensity at the midway between the loops due 

to a circular loop located at ( z = 2 m ) is calculated as: 

Solution: 
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(1). The magnetic field intensity at the midway between the loops due to a circular loop 

located at ( z = 0 ) and current in which is in the  directiona 
ˆ is calculated as: 
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(2). The magnetic field intensity at the midway between the loops due to a circular loop 

located at ( z = 0 ) and current in which is in the ( directiona  
ˆ )is calculated as: 
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7-7-3: Infinite Long Coaxial Transmission Line 

Consider an infinitely long transmission line consisting of two concentric cylinders having their 

axes along the z-axis. The cross section of the line is shown in Figure below. Where the z-axis is 

out of the page. The inner conductor has radius ( a ) and carries current ( I ) while the outer 

conductor has inner radius ( b )  and thickness ( t ) and carries return current (- I ) . We want to 

determine H everywhere assuming that current is uniformly distributed in both conductors. Since 

the current distribution is symmetrical, we apply Ampere's law along the Amperian path for each of 

the four possible regions :  



( 1 ). For region   a 0  , we apply ampere's law to path ( L1), giving:    

since the current is uniformly distributed over the cross section, hence: 

)2()2()
2

(ˆˆ

ˆˆ,..

)1()2(ˆˆ...

ˆˆ,

2

22

2

2

0 0

2

2









 







aa
adda

a

addsdanda
a

sdSHR

adaSHL

adldandald

zzenc

zz

s

enc

c

c

enc


















 





III
I

I
JJI

HH

HHIH





Equating the right and left hand side we get: 
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( 2 ). For region  ba   , we use the path ( L2) as the Amperian path: 
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Equating the right and left hand side we get: 
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( 3 ). For region  tbb   , we use path ( L3), getting: 
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Equating the right and left hand side we get: 
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( 4 ). For region  )( tb 
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Hence     Outside the coaxial transmission line 

Therefore, the final form of the magnetic field intensity in all region are given 

written generally as:  



The magnitude of ( H ) is sketched below: 


