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CHAPTER -2- 

 
Equations of state  

 

 Intensive and extensive variables:  

 

An intensive variable  is one whose value is independent of the mass of a 

system. e.g. P, T, ρ density, ɳ viscosity, ʋ specific volume, v velocity, specific 

enthalpy, thermal, u conductivity. The volume on the other hand, is 

proportional to the mass of the system considered and is an example of an 

extensive variable,  e.g. V volume, heat capacity, entropy, m, charge, 

magnetization,  internal energy, kinetic energy, potential energy.  

 

 Any extensive variable, when divided by the mass or the number of moles of 

a system becomes an intensive variable, the ratio of an extensive variable to 

the mass of a system is called the specific value of that variable,  

ν = specific volume or the volume per unit mass,   

V = total volume of a system. 

M = mass of the system  
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the specific volume is the reciprocal of the density ρ 
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density (ρ) is an intensive variable and hence the specific volume is also . 

The ratio of the extensive variable to the number of moles of a system is called 

the molal specific value of that variable .  
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N is number of molecules,  No  Avogadro’s number = 6.025x 10
23

 molecules / 

mole. 

 Note: that in the mks system, the term " mole" implies kilogram –mole , that 

is , a mass in kilograms numerically equal to the molecular weight . thus one 

mole O2 means 32 kilograms of O2 . 

Equation of state  

 
The equation of state of a substance is a relation between its  P , V and T . we 

known by experience that an equation of state exists for every homogeneous 

substance solid , liquid ,or gas .  

 

f ( p , ʋ ,T ) = 0         ---------      ( 5 ) 

 

 Equation of state of an ideal gas  

 
Suppose one has measured the p , v , t and mass of a certain gas, over wide 

ranges of these variable . Instead of the actual volume V, we shall use the 

molal specific volume , 
n

V
 .  let us take all data collected at a given absolute 

T, calculate for each individual measurement the ratio 
T

p
, and plot these 

ratios as ordinates against the P as abscissas . we shall use the mks system of 

units , in which P is expressed in 
2m

N
and molal specific volume in 

molekgm

m

.

3

. 

it is found experimentally that these ratios all lie on a smooth curve , 

whatever the T, but that the ratios at different temperatures. lie on different 

curves . The data for CO2 are plotted in Fig-1 for a number of different 

temperatures.  

The remarkable feature of these curves is a// that they all converge to exactly 

the same point on the vertical axis, whatever the temperature, and b// that the 

curves for all other gases converge to exactly the same point. This limit of the 

ratio 
T

P
, common to all gases , is called the universal gas constant and is 

denoted by  R  

 

R = 8.3149x10
3
   Joules/Kgm.-mole-deg.    In mks system     -----------     ( 6 )                                                                          

It follows that at low P we can write , for all gases ,  

 

R
T

P



 ,  RTP  ,  or     nRTP        -------       ( 7 ) 
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R             Where p in atm .  
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deg.

103149.8 7




molegm

ergs
XR              In cgs system 

 

Where p in dynes /cm
2
, v in cm

3
  

             
 

                       
 

At low p,  RTP   for ideal gas  RTP   at all pressures  and temperatures.  

It follows from eq.(7) that at standard condition's  

( p = 1 atmosphere  = 1.01325X10
5
 n/m

2
, T = 273.16

o
 K = 0

o
 C )  
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At constant temp. the product of pressure and specific volume of an ideal gas 

is constant . if we plot the  P as a function of  ʋ, as in fig .(2) ,we obtain at ant 

given T a rectangular hyperbola , with different hyperbolas temps. Real 

gases, of course, approximate to this behavior at low pressures, a fact that 

was discovered in (1660) by Robert Boyle and known as Boyle's law. 

 

                               
 

Other equations of state :  

 
Many equations have been proposed which describe the  P-ʋ-T relations of 

real gases more accurately than does the equation of state of an ideal gas. 

Some of these are frankly empirical while others are derived from 

assumptions regarding molecular properties. The Dutch Physicist van der 

Waals, in 1873, derived the following equation:  

RTb
a

P  ))((
2



               ---------------    ( 8 ) 

van der Waals Equation of state :  

 
    While deriving the perfect gas equation  RTP   on the basis of kinetic 

theory, it was assumed that  

 

1// the size of molecule of the gas is negligible and.  
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2// the force of inter-molecular attraction are absent but in actual practice, at 

high pressure, the size of the molecules of the gas become significant and 

cannot be neglected in comparison with the volume of the gas. Also at high 

pressure, the molecules come closer and the force of intermolecular attraction 

are appreciable. Therefore, correction should be applied to the gas equation.  

 

1// correction for pressure :  

 

 A molecule in the interior of a gas experiences forces of attraction in all 

directions and the resultant cohesive force is zero. A molecule near the walls 

of the container experiences a resultant force in words ( away from the wall ) . 

Fig! (3). Due to this reason the observed pressure of the gas is less than the 

actual pressure. The correction for pressure P depends upon:  

 

a// The number of molecules striking unit area of the walls of the container 

per second and, 

 

b// The number of molecules present in a given volume . 

Both these factors depend on the density of the gas.  

 

 

 

 

 

 

 

 

 

                                                           Fig. 3 

 

Correction for pressure     p
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a
P          ----------      ( 9 )   

a  is a constant   

Hence correct pressure =   
2

/



a
PPP       -----------     ( 10 ) 

    

2// correction for volume :  

 

The fact that the molecules have finite size shows that the actual space for the 

movement of the molecules is less than the volume of the vessel. The 

molecules have the sphere of influence around them and due to this factor, 
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the correction for volume is  b  where  b  is approximately four times the 

actual volume of the molecules .  

 

Therefore the corrected volume of the gas  =  ʋ - b            ------     ( 11 ) 

Let the radius of one molecule be  r  

 

The volume of the molecule   3

3

4
rX             -------------       ( 12 ) 

The center of any two molecules can approach each other only by a minimum 

distance of  2r  i.e. the diameter of each molecule. The volume of the sphere of 

influence of each molecule,  S  

 

XrS 8)2(
3

4 2                       -----------------      ( 13 ) 

    

Consider a container of volume V. if the molecules are allowed to enter by 

one,  

 

The volume available for first molecule  = V 

 

          //        //           //        second        //   = V – S  

 

          //         //         //         third          //    = V – 2S 

 

        ---         ---         ---         ---          --- 

//      //          //          nth            //        = V – (n-l) S  

 

Average space available for each molecule  
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SnS
V   

As the number of molecules is very large S/2 can be neglected .  

Average space available for each molecule  
2

nS
V   

2

8nX
V    but S = 8X   from equation  ( 13 ) 
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bVnXV  )(4                     ----------------      ( 14 ) 

 

b = 4(nx) = four times the actual volume of the molecule  

Thus the van der Waals equation of state for a gas is  

RTb
a

P  ))((
2



             ------------  ( 15 ) 

Where a  and b are van der Waals constants from eq.  ( 15 ) 

  

2

a

b

RT
P 


                    -----------   ( 16 ) 

Graphs between pressure and volume at various temperatures.  
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are drawn using equation (15). The graphs are as shown in fig.(4). In the 

graph, the horizontal portion is absent. But in its place, the curve ABCDE is 

obtained. This does not agree with the experimental isothermals for CO2 as 

obtained by Andrews. However, the portion AB has been explained as due to 

super cooling of the vapors      ( ينتج من فوق تبريد البخار ) , and the portion ED  

due to super heating of the liquid.            ( فوق تسخين السائل ) But the portion 

BCD cannot be explained because it shows decrease in volume with decrease 

in pressure, it is not possible in actual practice. The states AB and ED, though 

unstable, can be realized in practice by careful experimentation. At higher 

temperatures, the theoretical and experimental isothermals are similar. 

Until now as many as 56 different equations of state have been suggested. But 

no single equation satisfies all the observed facts.  

Dieterice ( 1901) has suggested an eq.  

 

RTv

a

RTebP


 )(   

 

 Berthelot has suggested an eq.  

 

RTb
T

a
P  ))((

2
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Critical constants  
The critical temperature and the corresponding values of pressure and 

volume at the critical point are called the critical constants, At critical point, 

the rate of change of pressure with volume )(
d

dp
 is zero. This point is called 

the point of inflexion according to van der Waals eq.  

2

a

b

RT
P 


         -----   ( 16 )     differentiating P with respect to ʋ 
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
                --------------    ( 17 ) 

 

At the critical point   0
d

dp
,  T = Tc, ʋ = ʋc 
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2

b
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C

C
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Differentiating  eq. 17     
432
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At the critical point          0
2

2


d
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 ,     T = TC,   ʋ = ʋc 
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 ,  2ʋc = 3ʋc – 3b,   ʋc = 3b     --------------    ( 20 ) 

 

Substituting the value of  ʋc = 3b  in eq.  18 

 

23 )3()3(

2

bb
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b
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
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2
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8
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Substituting these values of  ʋc  and TC in eq. 16  
2

a
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Questions 
 

Q.(1)  Calculate the value of critical temperature for carbon dioxide given 

that  a = 8.74X10
-3

 atms., and  b = 2.3X10
-3

 Cm
3
. Assuming  P = 1atm.,  

v = 1Cm
3
, and T = 0

o
C = 273 K, the corresponding value of  R can be obtained 

by substituting the values of P, v, a, b and T in the van der Waals equation.  

  

Q.(2)  Calculate the van der Waals constants for dry air, given that              

TC = 132K, PC = 37.2 atms.,  R per mole = 82.07 Cm
3
 atoms.K

-1
.  

     

Q.(3)  The density of water in cgs units is 
3

.1

Cm

gm
. Compute:  (a) the density in 

mks units, (b) the specific volume in 
.

3

Kgm

m
 , (c) the mks molal specific volume. 

(d) make the computation for air at standard conditions were the density in 

cgs units is 1.29X10
-3

gm/Cm
3
. The mean molecular weight of air of air is 29 

kgm., that is, the mass of 1kgm.-mole of air is 29kgm.. 

 

Q.(4)  At standard condition, how many kilograms of air are there in a room 

measuring 10mX10mX3m?. The mean molecular weight of air is 29, that is, 

the mass of 1 kgm – mole of air is 29 kgm. What is the weight of the air , in 

pounds?  

 

Q.(5)  In Fig let P2 = 10x10
5
n/m

2
,  P1 = 4x10

5
n/m

2
, ʋ1 = 2.5m

3
/kgm.-mole.  

Find: (a) the temperature T, (b) the temperature at points b and d, (c) the 

specific volume ʋ2, (d) the actual volume V at point  a   if the system consists 

of 4kgm – mole of hydrogen, (e) the mass of gas if it is oxygen and if V1 = 5m
3
.  
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Q.(6)  A tank of volume 0.5 m
3
 contains oxygen at an absolute pressure of  

150 atm. and a temperature of 20
0
C. Assume that oxygen behaves like an 

ideal gas. (a) How many kilogram – moles of oxygen are there in the tank?.  

(b) How many kilograms? (c) How many pounds? (d) Find the pressure if the 

temperature is increased to 500
0
C . (e) At a temperature of 20

0
C, how many 

moles can be withdrawn from the tank before the pressure falls to 15 atm.?.  

 

Q.(7)  A cylinder provided with a movable piston contains an ideal gas a 

pressure P1, specific volume ʋ1, and temperature T1. The pressure and volume 

are simultaneously increased so that at every instant P and ʋ are related by 

the equation  P = Kʋ, where k is constant. (a) Express the constant K in terms 

of the pressure P1, the temperature T1, and the gas constant R. (b) Construct 

the graph representing the process a above in the p – ʋ plane. (c) Find the 

temperature when the specific volume has doubled, if T1 = 200 K. 

 

Q.(8)  One standard atmosphere is defined as the pressure produced by a 

column of mercury exactly  76 Cm. high, at a temperature of 0
o
C, and at a 

point where g = 980.665 Cm/sec
2
. (a) why do the temperature and the 

acceleration of gravity have to be specified in this definition?. (b) Compute 

the pressure in n/m
2
 produced by a column of mercury 76 Cm in height, of 

density 13.6 gm/Cm
3
, at a point where g = 980 Cm/sec

2
.
 
 

 

Q.(9)  (a) Estimate as accurately as you can from Fig. the molal specific 

volume of CO2 at a pressure of 300 atm. and a temperature of 60
o
C. (b) At 

this pressure and temperature, how many moles of CO2 are contained in a 

tank of volume 0.5 m
3
?. (c) How many moles would the tank contain if CO2 

were an ideal gas?. 
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Q.(10)  In all so – called diatomic gases, some of the molecules are dissociated 

into separate atoms, the fraction dissociated increasing with increasing 

temperature. The gas as a wale thus consists of a diatomic and a monatomic 

portion. Even though each component may act as an ideal gas, the mixture 

does not, because the number of moles varies with the temperature. The 

degree of dissociation δ of a diatomic gas is defined as the ratio of the mass  

m1  of the monatomic portion to the total mass m of the system.  
m

m1  . 

Show that the equation of states of the gas is  

RT
M

m
PV ))(1(

2

   

Where M2 is the molecular  weight  of the diatomic component. Assume that 

the gas obeys Daltons law, i.e., the measured pressure P is the sum of the 

pressures each component would exert if it alone occupied the total volume V.  

 

 

Q.(11)  Volume of the container is ( 0.0655cm
3
 ), which contains O2, at 

pressure ( 2 atm. )and temperature ( 260
o
C ). Find No. of, molecules and the 

mass of O2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


