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Chapter 3  
Work  

Work.  The term work refers to an inter change of energy between a system 

and its surroundings. When the hot gases in the cylinders of an automobile 

engine push against the moving pistons, work is done by the gases. When air 

is forced into a bicycle tire by a pump, work is done on the air. The work may 

be mechanical, as above, or it may be electrical, magnetic, or any other types.  

dsFW  cos          ---------    ( 1 ) 

in most cases of practical interest the work is associated with a change in 

volume.  

       Suppose that we have a system of arbitrary shape as in Fig. 1, acted upon 

by an external hydrostatic pressure Pe, and that the original boundary of the 

system, shown by full lines, is displaced out ward against the external 

pressure to a new position show by dotted lines. 

                                    
 

 The external force df exerted against a portion of the surface of (dA) is     

 dAPdF e           ------------      ( 2 )             

And if this portion moves out a distance (ds) the work done against the 

external force is:  

 dAdsPdFdsdW e            ----------------       ( 3 )    

 AdsPdW e               --------------       ( 4 )             A = total area of the surface 

 AdsdV           -------------     ( 5 )        the increase in volume of the system             

dVPdW e         -------------    ( 6 )         external work   

Where dv is the change in volume of the system pe external pressure,  

W expressed in joules pe in ( 
2m

N
 ), dV in m

3
. Pe external pressure = p internal 

pressure if the process is reversible and in equilibrium at all instants.  

                 PdVdW                 -------------       ( 7 )       
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The work  dW is ( + tive ) when work is done by a system and the volume of 

the system increases, and  dV  is positive. When work is done on a system, the 

volume decrease, and  dV  and  dW  are (- ive ), negative.  

(   
n

Pd V

n

dW
   )  when the work is divided through by the mass (m) or the 

number of moles ( n ) of a system  

The work done per unit mol.             Pdvdw              -----------      ( 8 )  

         Any reversible process can be represented by a line in the  P- ʋ plane. 

The ( dw ) done in a small ( specific ) volume change ( dv ) is represented 

graphically by the area of a narrow vertical strip ( Fig. 2 ). The total work ( w  

) done in the finite increase in volume from state a to state b. 

 

                       

    
b

a
Pdw




                   ---------------          ( 9 ) 

 (w +ive) if the process from a to b, (w -ive ) if the process in the opposite 

direction (from b to a ) and the work is done is done on the system,              

Fig. ( 3- a, b, c )  
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                    Fig. 3 – a                                                      Fig. 3 – b 

    The work done by the system                       The work done on the system  

                
b

a
Pdw




                                                             

a

b
Pdw




    

 

 

    

                          
               Fig. 3 – c  

 

                                      The net work done by the system 

 

We next evaluate (   pd   ) for a number of processes.  
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1/ The work done in any isometric process  is obviously zero, since in such a 

process 

 v = constant,  dv = 0,  w = 0,   fig. 4   

 

                                    
                           Fig. 4  

 

2/ In an isobaric process the pressure is constant and the work is  

)( abPb

a
dPw 




                   -----------------       ( 10 )   

 Which evidently is the area of the shaded rectangle in Fig. 5 

                                 
 

                                                                     Fig. 5 

 

3/ Consider next an isothermal process, carried out at the constant 

temperature  T. If the system is an ideal gas  

 


RT
P             -----------------       ( 11 ) 

  
a

b

T RTb

a
d

RT
w









ln            --------------        ( 12 )                                          
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( Tw  ) is represent by the shaded area in Fig.6, and This equation can be put 

in a number of different forms  

RTPP bbaa   ,                        
b

a

a

b

P

P





                                                      

 
b

a

a

b

aaT
P

P
RTPw lnln 




                       ---------------------        ( 13 )                                                   

                            
                                        

   

                                              Fig. 6      

 

Work depends on the path 
 

     Obviously, there are an infinite number of different processes by which a 

system can be taken from a given initial state to a final state.  

Three possible processes connecting states a and b are show in Fig. 7 The 

work done by the system is greatest along the path acb, least along path adb, 

and has some intermediate value along the third path.  

 

                                        
                                          Fig. 7 
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 111112)( 2)2(20
2

1





 pPdPPdw bcapath             -------------    ( 14 ) 

 

111111)( )2(
2

1





pPPddPw bdapath                     -------------      ( 15 ) 

11
1111

)(
2

3

2

2



P

PP
w bapath 


                                                 -------------       ( 16 ) 

 

 

Partial derivatives 

 
      In a system consisting of a fluid under pressure in a cylinder provided 

with a movable piston, one can change the  V  by any arbitrary amount  dv  

and the same time change the  T  by any arbitrary amount  dT. When this has 

been done, the  P  will be found to have changed by just such an amount  dp  

that the new values of      P, V and T also satisfy the equation of state.  

       The general from of the equation of state is  

0),,( TPF             -----------      ( 17 )         

Or, if it is solved in turn for each of the state variables, 

),(1 TfP  ,         ),(2 PTf ,         ),(3 PfT           -----------     ( 18 ) 

 

),( TfP  ,       dT
T

P
d

P
dP 

























 


        -------------      ( 19 )    in mathematics 

 

dT
T

P
d

P
dP

T 





























                    --------------      ( 20 )      in thermodynamics 

 

),( PTf ,     dP
P

dT
T

d
TP





























             --------------      ( 21 ) 

Let us now eliminate  dv  between the latter two equations ( 20 and 21 ) and 

collect coefficients of  dp  and  dT.  

dT
T

P
dP

P
dT

T

P
dP

TPT 






























































           ------------     ( 22 ) 

 

dT
T

P
dT

T

P
dP

P

P
dP

PTTT 






































































  

 

dT
T

P

T

P
dP

P

P

PTTT


























































































1  
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But the changes  dp  and  dT  are independent, that is, we can assign any 

value to dT and any other value to  dp. Suppose we let  dT = 0,  dp ≠ 0  

Then to satisfy the equation above we must have  

 

01 

































TT P

P 


,     

 

T

T

P

P





























1
        -------------     ( 23 ) 

 

Similarly since we can set     dP = 0,  dT ≠ 0,   it must be true that  

 

0









































 T

P

T

P

PT

          --------------     ( 24 ) 

 

By combining Eqs.23 and 24, the latter nay be put in the more symmetrical 

cyclical form ( cyclic relation ). 

 

1








































 P

T

T

P

PT

                    ------------------       ( 25 ) 

 

Eqs. 23 and 25 are readily verified for an ideal gas   

RTP  ,     


RT
P  ,     

P

RT
 ,   

R

P
T


   

2

RTP

T













,        

P

R

T P













,       

RP

T 















     and 

 

1
2














































  P

RT

R
X

P

R
X

RT

P

T

T

P

PT

     in agreement with eq. 25 

 

 

 

Coefficient of expansion and compressibility 

 
    Even if the equation of state of a substance is not known or cannot be 

expressed in any simple analytic form, the partial derivatives  
PT












 and   
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TP












 can be found from tabulated properties of materials, namely, the 

coefficient of cubical expansion     and the compressibility  K . 

  TV

V

TTV

VV













1121

12                     --------------      ( 26 ) 

 

Where  V2  and  V1  are the volume of a specimen of the material at 

temperatures  T2 and   T1.  




  is the mean fractioned increase in volume, per degree rise in temperature.  

The true coefficient of volume expansion   . 

 

 
dT

dV
X

VTV

V

T

1
lim

1
0
















                   -----------------      ( 27 ) 

 

The mks units of     are ( deg.
-1

 ). However, the volume of an object depends 

upon pressure as well as upon temperature and it is implied in the definition 

above that the pressure is to be kept constant.  

 
 
 P

P

dT

dV
X

V

1
                   -------------       ( 28 ) 

 

The ratio of a small change in  V  to a small change in  T, both at constant   P, 

is the same thing as the partial derivative of  V  with respect to  T  at constant   

P. Hence  

 
 
  PP

P

T

V

dT

dV












    and          

PT

V

V














1
                   -----------     ( 29 ) 

 

Or in terms of specific volumes,  

 

PT



















1
       ----------     ( 30 )                 

PT















             --------------     ( 30 ) 

 

It follows from eq. (30) that the     of ideal gases  

 

RTP  ,     
P

RT
   

 

P

R

T P













,      

RT

R

P

R
X 




1
,                   

T

1
              -------------     ( 31 ) 
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The van der Waals equation is a cubic in  ʋ  but can be solved explicitly for   

P. Hence in computing      it is simplest to use eqs. 23 and 25  and write  

T

P
P

T

P

T









































           then, since     
2

a

b

RT
P 


  

We have   
b

R

T

P


















,        
32

2

)( 

a

b

RTP

T
















 

 

 





























32

2

1









a

b

RT

b

R

T P

,        

 
23

2

23

23 )(2

)(

)(

)(2

1

baRT

bR

b

baRT

b

R

X























  

23

2

)(2

)(

baRT

bR









            -----------------      ( 32 )   for van der Waals gas 

The mean compressibility of a material  


K  is defined by the eq.  

  PV

V

PPV

VV













1121

12                     ----------------      ( 33 ) 

Where  V2  and  V1  are the volume at pressures  P2  and  P1.  

The true compressibility  


K  is the limiting value of the expression above when 

the changes in pressure and volume become infinitesimal. 

dP

dV
X

VPV

V
K

P

1
lim

1
0
















 

The (-ive) sign is included in the definition of  K   because an increase in  P  

always results in a decrease in volume.  

Thus if  dp  is (+ive),  dv  is (-ive) and  K  is a (+ive) quantity. 

The mks unite of  K  are ( n/m
2
 ).  
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If the T is constant, the corresponding value of  K  is called the isothermal 

compressibility and the derivative becomes the partial  of   V  with respect to  

P  at constant  T. 

 
  TT

T

P

V

VdP

dV
X

V














11
            

TP

V

V














1
      ------------     ( 4 ) 

Or in terms of specific volumes. 

    

TP


















1
       -------     ( 35 )             

TP















               ----------    ( 35 ) 

From eq(35) the   K  for an ideal gas is     RTP  ,    
P

RT
  

2P

RT

P T
















,           

P
X

P

RT

P

RT
X

11
2 
  

P

1
                ----------------         ( 36 ) 

For van der Waals gas is         RTb
a

P  ))((
2



,       

 
2

a

b

RT
P 


       --------- ( a )    

T

T P
X

P



































111
              -------------      ( b ) 

23

23

32 )(

)(22

)( b

baRTa

b

RTP

T 

























        ------------     ( c ) 

23

22

23

23 )(2

)(

)(

)(2

11

baRT

b

b

baRT
X


















 

23

22

)(2

)(

baRT

b









                    ----------------      ( 37 )   

The  K   of solids and liquids must be determined experimentally.  
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The work done in terms of  and K  

Let  ),( PTf ,  so    dP
P

dT
T

d
TP





























  

 dPKdTPdP
P

dT
T

Ppddw
TP




 
































  

 KdPdTPdw                    -------------        ( 38 ) 

For an ideal gas, this reduces to  

dP
P

P
dT

T

P
pddw


  ,    dPRdTpd    

A relation which could have been written down at once from the equation of 

state, since 

RdTdPpd          -------------     ( 39 ) 

The work depends on the path 

   As an example , suppose that a solid or liquid is taken from state  1 to state  

2 in Fig.8 first along path  132  and then along path  12, where for the 

latter path, 
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  aTPP o
  

Along path  13,   tconsPP tan1  ,     dp = 0    and  

 KdPdTPw    ,            dp = 0 

)( 121131

2

1

TTP
T

T

dTPw                   -------------     ( 40 ) 

 

This is the general expression for the work done in any isobaric process by a 

system having the properties assumed above.  

Along path   3→2,    T = const.,   dT = 0 and  

 KdPdTPw    ,           dT = 0 

)(
2

2

2

2

123

2

1

PP
P

P

PdPw 


 


 ,              --------------       ( 41 ) 

 

This is the general expression for the work done in any isothermal process by 

a system having the properties assumed.  

The total work along the path  w1→3→2 is 

 

)(
2

)( 2

2

2

11212331231 PPTTPwww 


 


             ---------------       ( 42 )    

 

Along the direct path 12,  

 

P

P

PdP
T

T

dTaTPw o

2

1

2

1

)(21   

)(
2

)(
2

)(
2

1

2

2

2

1

2

21221 PPTTTT
a

Pw o 





  
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Expressing the constants   Po  and   a  in terms of   P1,   P2,  T1   and  T2  

      PPTTTTTT
a

Pw o

2

1

2

212121221
22















  

     PPTTTT
a

Pw o

2

1

2

2121221
22















           ----------    ( a ) 

aTPP o
 ,   aTPP o 11

  ,    aTPP o 22
    ,    

 TTaPPP o 1221
2  ,     TT

a
P

PP
o 12

21

22



     ------   ( b )  

 from eqs.  a & b 

   PPTT
PP

w
2

1

2

212

21

21

22


 



                        --------------       ( 43 ) 

 

From eqs. 42 and 43,   dw   is not an exact differential and that the work 

depends on the path and not merely on the end points.  

From eqs. 24  and  25  

1








































 P

T

T

P

PT

,           

T

P

P

T

T

P














































 

From the definition of     and  K  

















 





T

P
                   --------------     ( 44 ) 

Then for a solid or a liquid, and to the degree of approximation to which the 

ratio 



   can be considered constant, the increase in pressure (  P2-P1 ), when 

the temperature is increased from  T1  to  T2  and the volume is kept constant, 

is  

 TTPP 1212





                   -------------------      ( 45 ) 
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Questions 

Q.(1)  Steam at a constant ( absolute ) pressure of (20atm.) is admitted to the 

cylinder of a steam engine. The length of the stroke is (60 Cm) and the 

diameter of the cylinder ( 20 Cm ). How much in joules is done by the steam 

per stroke?  

Q.(2)  1 kgm of water, when converted to steam at atmospheric pressure, 

occupies a volume of ( 1.67 m
3
 ). Compute the work done against atmospheric 

pressure.  

Q.(3)   5 kgm. of oxygen occupy a volume of ( 10 m
3
 ) at a temperature of        

( 300 K ). Find the work necessary to decrease the volume to ( 5 m
3
 ),              

a// at constant pressure,   b// at constant temperature.   c// what is the 

temperature at the end of process  a?.   d// what is the pressure at the end of 

process  b?.   e// show both process in a p-v diagram.  

Q.(4)  An ideal gas originally at a temperature  T1 and pressure  P1 expands 

reversibly against a piston to a volume equal to twice its original volume. The 

temperature of the gas is varied during the expansion as that at each instant 

the relation  KVP   is satisfied, where  K is a constant.  a//  Draw a diagram 

of the process in the  P-V plane.  b//  Find the work done by the gas, in terms 

of   n,   R,  T1 and P1 .  

Q.(5)   An ideal gas at an initial pressure   P1  and volume   V1  is heated at 

constant volume until the pressure is doubled, allowed to expand isothermally 

until the pressure drops to its original value, and then compressed at constant 

pressure until the volume returns to its initial value. a// Sketch the process in 

the  P-V plane. b// Compute the net work done in the process, if ( n = 2 kgm.-

moles, P1 = 2 atm. and V1 = 4m
3
 ). 

Q.(6)    a// Derive the general expression for the work done per mole by a van 

der Waals gas in expanding reversibly and at a constant temperature  T from 

a specific volume ʋ1 to a specific volume   ʋ2 .                                                                   

b//  Using the constants (a =580 n-m
4
 /(kgm-mole)

2
, b = 0.0319 m

3
/kgm.-mole). 

Find the work done when  2moles of steam expand from a volume of ( 30 m
3 

) 

to a volume of  ( 60 m
3
 ) at a temperature of ( 100

o
C ). C// Find the work done 

by an ideal gas in the same expansion. 

Q.(7) The Clausius equation of state is  RTbP  )(                                             

a// Compute the coefficient of cubical expansion, and the compressibility, for 

a substance obeying this equation. b//  Show that if ( a = 0 ), the 
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corresponding quantities for a van der Waals gas reduce to the expressions 

derived in ( a ). 

Q.(8)     The Dieterici equation of state is   RT
RT

a

ebP 
 )( , where ( a & b ) 

are constants, different for different gases.   a// Making use of the cyclic 

relation, eq. 25 , find the coefficient of cubical expansion of a substance 

obeying this equation.   b// At high temperatures and large specific volumes, 

all gases approximate ideal gases. verify that for large values of   T & ʋ, the 

Dieterici equation and the expression for    derived in  a// , both go over into 

the corresponding equations for an ideal gas. 

Q.(9)     Express the coefficient of cubical expansion and the compressibility, 

in terms of the density ( ρ ) and its partial derivatives. 

Q.(10)     A cylinder provided with a piston contains ( 1m
3
 ) of a fluid at a 

pressure of ( 1 atm.) and a temperature of ( 300 K ). The pressure is increased 

reversibly to ( 100 atm.) and the temperature is kept constant. Find the work 

done on the system,   a//  if the fluid is an ideal gas,   b// if it is a liquid of 

compressibility [ 5x10
-10

  (n/m
2
)

-1
], about equal to that of water. C// Find the 

change in volume of each fluid. 

Q.(11)     A fluid in a cylinder is at a pressure of ( 700x10
3
 n/m

2
 ). It is 

expanded at constant pressure from a volume of ( 0.28 m
3
 ) to a volume of        

( 1.68 m
3
 ). Determine the work done. 

Q.(12)    One Kmole of a gas at ( 27
o
C ) expands isothermally until its volume 

is doubled. Find the work done. 

Q.(13)     Work done in a thermodynamic cycle. One mole of an ideal gas 

goes through the thermodynamic cycle shown in fig. if   (  PA =  2x10
4
 pa,      

PD = 1x10
4
 pa,  VA = 0.25 m

3
, and VB = 0.5 m

3
 ), find the work done along the 

path, a//  AB,  b//  BC,  C//  CD,   d//  DA,  and e//  ABCDA. 
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Q.(14)     The volume of a glass beaker is ( 200 Cm
3
 ) which was filled with 

mercury at the temperature of ( 20
o
 C ). How much the mercury is spilled, 

when the temperature of the system is raised to ( 100
o 

C )?.                                                             

The coefficient of cubical expansion for glass is  1.2x10
-5

/
o
C ,                                                   

The coefficient of cubical expansion for Hg is  18.1x10
-5

/
o
C,                                                                                                              

Q.(15)     At constant temperature, increase the pressure from  Zero to             

(1000 atm. ) on ( 10 gm ) of  Cu. Determine the work done if the density of  Cu 

is ( 8.93 gm/Cm
3
 ), and coefficient of compressibility is ( 0.716x10

-6
 atm.

-1
 ).  

Q.(16)     Determine the work done at vaporization  ( 100gm ) of  C6H6  at the 

pressure of ( 1 atm. ), and the boiling point of it is ( 80.2
o
 C ). ( molecular 

weight of C6H6   is 78 ).  

Q.(17)   Find the work done for one mole of an ideal gas at constant pressure  

P, where is expanded by rising the temperature of one degree. 

Q.(18)     Find the work done for ( 75 kgm. ) of water when it is compressed 

from  ( 140 Kpa ) to ( 7.5 Mpa ) at constant temperature ( 40
o
C ). If the 

specific volume of water at the temperature ( 40
o
C ), and the initial pressure 

was ( 1.0078 Cm
3
/gm ) and at the final pressure was ( 1.0045 Cm

3
/gm ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


