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Chapter 3

Work
Work. The term work refers to an inter change of energy between a system
and its surroundings. When the hot gases in the cylinders of an automobile
engine push against the moving pistons, work is done by the gases. When air
Is forced into a bicycle tire by a pump, work is done on the air. The work may
be mechanical, as above, or it may be electrical, magnetic, or any other types.
W :IF cosfds ~ --m------ (1)

In most cases of practical interest the work is associated with a change in
volume.

Suppose that we have a system of arbitrary shape as in Fig. lpacted upon
by an external hydrostatic pressure P,, and that the original boundary of the
system, shown by full lines, is displaced out ward against the external
pressure to a new position show by dotted lines.

ds
P N dF = PdA

Fig. - 1-

The external force'df exerted against a portion of the surface of (dA) is

dF =P,dA <=%---l-—- (2)
And if thisiportion moves out a distance (ds) the work done against the
external.force Is:

dW =dFds= P.dAds =~ --------------- (3)

dW =PAds  --mmmmmeeeee- (4) A = total area of the surface
dv =Ads = -----m-meee- (5) the increase in volume of the system
dW =PdV =~ - (6) external work

Where dv is the change in volume of the system p, external pressure,
W expressed in joules pe in ( % ), dV in m°. P, external pressure = p internal

pressure if the process is reversible and in equilibrium at all instants.
dW =PdvV =~ e (7)
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The work dW is ( + tive ) when work is done by a system and the volume of
the system increases, and dV is positive. When work is done on a system, the
volume decrease, and dV and dW are (- ive ), negative.
( dTW=PTOIV ) when the work is divided through by the mass (m) or the
number of moles ( n) of a system
The work done per unit mol. dw=Pdv - (8)

Any reversible process can be represented by a line in the P- v plane.
The ( dw) done in a small ( specific ) volume change ( dv) is represented
graphically by the area of a narrow vertical strip ( Fig. 2 ). The total work ( w
) done in the finite increase in volume from state a to state b.
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Fig. - 2-
Area represents work in a p-v diagram

W:Lf: T —— (9)

(w +ive) if the process from a to b, (w -ive ) if the process in the opposite
direction (from b to a ) and the work is done is done on the system,
Fig. (3-a,b,c)
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The net work done by the system

We next evaluate ( j pdv ) for a number of processes.
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1/ The work done in any isometric process is obviously zero, since in such a
process
v =constant, dv=0, w=0, fig.4

P b

Fig. 4

2/ In an isobaric process the pressure is constant. and’ the work is

W=PJ.;): do=P(v, -v,) = =mmmmmmmmmmeee- (10)

Which evidently is the area of the shaded rectangle,inFig. 5
Pi

Isobaric

b
ple-e---a- & 2o s

l Area = P AV = Work

% }<7AV—>{V"V
Fig. 5

3/ Consider next an isothermal process, carried out at the constant

temperature T. If the system is an ideal gas

P_RT _________________ (11)
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( w, ) is represent by the shaded area in Fig.6, and This equation can be put
in a number of different forms

P
Pv, =Py, =RT, et R
D, Pb
Uy Pa
W, =Po, =In—>=RTIh2  —emmmmmmmmmemeeee (13)
Uy Pb
p
T

p(l T

Fig. 6

Work depends on the path

Obviously, there are an infinite number of different processes by which a
system can be taken from a given.initial state to a final state.
Three possible processes eonnecting states a and b are show in Fig. 7 The
work done by the systemiis, greatest along the path acb, least along path adb,
and has some intexmediate value along the third path.

P4 c b
Pl 2P
Pil ..
a d
-V
V1 V2
Fig. 7
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U
Wpath(a»ceb) = J. Pdv +L)12 Psz =0+ 2P1 (21)1 - Ul) =2 pv, - ( 14 )
v2
Wpath(asd—b) = IUl PldU + J. Pdv = Pl (21)l —l)l) =pv, e ( 15 )
2Pv, + P, 3
Watha—sb) = % = E Pll)l ------------- ( 16 )

Partial derivatives

In a system consisting of a fluid under pressure in a cylinder provided
with a movable piston, one can change the V by any arbitrary amount dv
and the same time change the T by any arbitrary amount dil."When this has
been done, the P will be found to have changed by just such an amount dp
that the new values of P,V and T also satisfy the equation of state.

The general from of the equation of state is

F(P,o,T)=0 -==——---—-- (17)

Or, if itis solved in turn for each of the state.variables,

P=f,(0T),  v={(TP),  T=fPu) JV - (18)

P=f(T), dP :(a_deuJ{a_deT ------------- (19) in mathematics
ov oT

dP=(@j du+(@j L I N (20) inthermodynamics

ov ); aT ),
oV ov
=f(T,P g, 4 R I | 2 21
v (T,P), do (aTdeTjt(anTdP ( )

Let us now eliminate dv between the latter two equations ( 20 and 21 ) and
collect eoefficients of dp and dT.

LR
o 2)[3) () ) o)
() )3
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But the changes dp and dT are independent, that is, we can assign any
value to dT and any other value to dp. Suppose we let dT =0, dp#0
Then to satisfy the equation above we must have

(E)E) o

) ﬁ ------------- (23)

P

Similarly since we canset dP =0, dT #0, it must be true that

BEE ——

By combining EQs.23 and 24, the latter nay be put'inythe more symmetrical
cyclical form ( cyclic relation).

BEE-

Eqgs. 23 and 25 are readily verified foran ideal gas

PU:RT' P:E’ Uzﬂ, T:&
v P R
(@j :—E’ (a—uj - (ﬁ) =Y and
ovJr v Ol Jp=P oP), R
(E) [@j (ﬂ} =—§XB><3=—£=—1 In agreement with eq. 25
ov Jr\ T Jp\ P J v P R Po

Coefficient of expansion and compressibility

Even if the equation of state of a substance is not known or cannot be
expressed in any simple analytic form, the partial derivatives (a_ﬂ and
P
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(%} can be found from tabulated properties of materials, namely, the
.

coefficient of cubical expansion p and the compressibility K.
IB Vv, -V, AV

TV, -T,) VT T (26)

Where V, and V; are the volume of a specimen of the material at
temperatures T,and T;.

[ is the mean fractioned increase in volume, per degree rise in temperature.
The true coefficient of volume expansion 3.

= lim ﬂ :lxd_v _________________ (27)
aT-0\ V, AT vV dT

The mks units of s are (deg.™ ). However, the volume,of’an object depends

upon pressure as well as upon temperature and.it is Amplied in the definition
above that the pressure is to be kept constant.

The ratio of a small change in V to a'small change in T, both at constant P,
Is the same thing as the partial derivative of V with respectto T at constant
P. Hence

(@v), _(Wj and ﬂzi(&j ----------- (29)

@r), lor

Or in termsof specific volumes,

ﬂ=%(2—_ﬂp ---------- (30) ﬁu=(a—“jp -------------- (30)

It follows from eq. (30) that the B of ideal gases

Pv=RT, u=E
P

ov R Cp_tyR_ R ) zl _____________
(EJP_E’ P B TR "7 (31)
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The van der Waals equation is a cubic in v but can be solved explicitly for
P. Hence in computing g itissimplest to use egs. 23 and 25 and write

)

(6_‘)) __ Ny then,since p="9__ 2
aT Jp oP v-b o
(o),
We have (a_P) __R , (G_Pj ___RT . 2
oT ), v-b ov J; (b-b)* »°
R
ﬁ_z(a_vj S O
v\ T Jp {_RTjLZa]
(U_b)z U3
R
ﬂ:—_lx (b—b) __ Ru*(v-b)
v —RTv®+2a(v-b)*> RTv®-2a(v-hb)?
v*(v-b)®
Ru*(v-h)
L L e — (32) for van der Waals gas

~ RTo®—2a(v-h)?

The mean compressibility of'a material « _is defined by the eq.

- V,-V, av oAy
" Vv,(R,-P) VAP (33)

Where V, and V4, are the volume at pressures P, and P;.

The true compressibility K is the limiting value of the expression above when
the changes in‘pressure and volume become infinitesimal.

K= Ilim| - M :_lxd_v
ap-ol - VAP vV dP

The (-ive) sign is included in the definition of K because an increase in P
always results in a decrease in volume.

Thus if dp is (+ive), dv is (-ive) and K is a (+ive) quantity.

The mks unite of K are (n/m?*).
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If the T is constant, the corresponding value of K is called the isothermal
compressibility and the derivative becomes the partial of V with respect to
P atconstant T.

K:_ix(dL)T__i[a_Vl K:_i(a_vl ------------ (4)

Vo (dP), VviepP VA

Or in terms of specific volumes.

1(ov ov
K=-—=|=|  -—--—-- 35 Ko=——| = === 35
U(@PJT ( ) v (apjT ( )
Fromeq(35) the K foranidealgasis Pu=RT, u=%
(@j :—ﬂ, K:—lx_izi)(l
oP J; p? v P> Po P
1
D el 36
= (36)
For van der Waals gas is (P +%)(u—b) =RT,
U
RT a
P_U—b_F (a)
K:-l(a—”j IE SR 9, VL — (b)
v\ 0P J; ) (8P}
v );
oP RT 2a —RTo® +2a(v-b)?
Sl — = — R — S —— P C
[aul 0-b) o 0> (0—b)’ (¢)
ko iy 1 ___v-by
v —RTv*+2a(v-b)> RTv®-2a(v-b)?
v (v-b)?
UZ(U_b)Z ________________ (37)

" RTo® —2a(v-b)?

The K of solids and liquids must be determined experimentally.

10



Thermodynamics - chapter - 3-

The work done in terms of sand

Let v=f(T,P), SO du:(a—”j dT+(6—Uj dP
ot ), oP ).

dw= pdo=P [a—“j dT +(a—“j dP | = P[SudT — KudP]
aT ), oP J;

dw=Po[gdT —KdP] e (38)

For an ideal gas, this reduces to
dw = pdu=$dT —%dp, pdo = RAT — udP

A relation which could have been written down at once from-the equation of
state, since

pdo+udP = RAT ~ —-mmmmmmmeee (39)

The work dependsen the path

As an example , suppose that a solidor liquid is taken from state 1 to state
2 in Fig.8 first along path 1-3—2 and-then along path 1-2, where for the
latter path,

A

Fig. 8

11
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P=P.,~al
Along path 1-3, P=P =constant, dp=0 and
w~ [Pu[AdT - KdP], dp=0
IS Pluﬂ-l:rdT ~Pup(T,-T,) = - (40)
T

This is the general expression for the work done in any isobaric process by a
system having the properties assumed above.

Along path 3—2, T =const.,, dT=0and

w = [Pu[AdT - KdP], dT =0
P, Ko

W, =Ko [PdP = =Z(R7-P), g (41)
P,

This is the general expression for/the work done in any isothermal process by
a system having the properties.assumed.

The total work along the path w;_,;_,, is

Ko
Wi 550 =W 3 2 Wal, = ﬁUP:L(TZ _Tl) _7(P12 - Pzz) """""""" ( 42 )

Along the direct path 1-2,

T, P,
w,,, ~vf3 [ (P, +aT)dT —uK [PdP
T, P,

avp

W, =0T =T )+ 22T -T2 (Pi- P

12
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Expressing the constants P, and a intermsof P;, P, T; and T,

(P:-p3)

CLS
2

<08 AT~ T ) ST+ T)

o ~oBT TP ST S PE-pl) e (a)

P ZP0+8.T’ P1:Po+aT1’ P2:Po+aT2 !

P+P,=2P,+a T, +T) PoPeop @i 1) v (b)
fromeqgs. a&b
Wo.x U %(Tz_Tl)_%(PE_Pf) -------------- (43)

From egs. 42 and 43, (yw is not an eXact differential and that the work
depends on the path and not merely on the.end points.

Fromeqs. 24 and 25

P (v (aT) _ 4 op @
(auMaij(anu (aTju [60}

oP

From the definition of ‘4 and K

(G_Pj AN (44)
ar ), =K K

Then for a solid or a liquid, and to the degree of approximation to which the
ratio g can be considered constant, the increase in pressure ( P,-P;), when

the temperature is increased from T; to T, and the volume is kept constant,
IS

P

P~ -T) 0 e 45
P.-Pi~ (.- T) (45)

13



Thermodynamics - chapter - 3-

Questions

Q.(1) Steam at a constant ( absolute ) pressure of (20atm.) is admitted to the
cylinder of a steam engine. The length of the stroke is (60 Cm) and the
diameter of the cylinder ( 20 Cm ). How much in joules is done by the steam
per stroke?

Q.(2) 1 kgm of water, when converted to steam at atmospheric pressure,
occupies a volume of ( 1.67 m*). Compute the work done against atmospheric
pressure.

0Q.(3) 5 kgm. of oxygen occupy a volume of ( 10 m®) at a temperature of
( 300 K ). Find the work necessary to decrease the volume ta" (5 m®),
a/l at constant pressure, b// at constant temperature. ..c// what is the
temperature at the end of process a?. d// what is the pressure at the end of
process b?. e/l show both process in a p-v diagram.

Q.(4) An ideal gas originally at a temperature»T,‘and pressure P; expands
reversibly against a piston to a volume equal to.twice its original volume. The
temperature of the gas is varied during the expansion as that at each instant
the relation P=Kv is satisfied, where K isa constant. a// Draw a diagram
of the process in the P-V plane. b// Findithe work done by the gas, in terms
of n, R, Tyand P;.

Q.(5) An ideal gas at an initial pressure P; and volume V; is heated at
constant volume until the presSureis doubled, allowed to expand isothermally
until the pressure drops to,its‘eriginal value, and then compressed at constant
pressure until the volume, returns to its initial value. a// Sketch the process in
the P-V plane. b// Compute the net work done in the process, if (n =2 kgm.-
moles, P, = 2 atm. and V; = 4m?).

Q.(6) al/l Derive.the general expression for the work done per mole by a van
der Waals gas in expanding reversibly and at a constant temperature T from
a specifict volume wv; to a specific volume v, .
b// Using the constants (a =580 n-m* /(kgm-mole)?, b = 0.0319 m*/kgm.-mole).
Find the work done when 2moles of steam expand from a volume of ( 30 m®)
to a volume of (60 m*) at a temperature of ( 100°C ). C// Find the work done
by an ideal gas in the same expansion.

Q.(7) The Clausius equation of state s P(v—b)=RT

a/l Compute the coefficient of cubical expansion, and the compressibility, for
a substance obeying this equation. b// Show that if ( a = 0 ), the

14
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corresponding quantities for a van der Waals gas reduce to the expressions
derivedin (a).

a

Q.(8) The Dieterici equation of state is P(U—b)eURT =RT,where (a&Db)
are constants, different for different gases. a// Making use of the cyclic
relation, eq. 25 , find the coefficient of cubical expansion of a substance
obeying this equation. b// At high temperatures and large specific volumes,
all gases approximate ideal gases. verify that for large values of T &, v, the
Dieterici equation and the expression for g derived in al// , both go eaverinto

the corresponding equations for an ideal gas.

Q.(9) Express the coefficient of cubical expansion and the compressibility,
in terms of the density ( p ) and its partial derivatives.

0Q.(10) A cylinder provided with a piston contains, (“dm>) of a fluid at a
pressure of ( 1 atm.) and a temperature of ( 300 K ). The'pressure is increased
reversibly to ( 100 atm.) and the temperature is‘kept/constant. Find the work
done on the system, _a// if the fluid is an ideal"gas, _b// if it is a liquid of
compressibility [ 5x10° 0 (n/m?)?], about equal to-that of water. C// Find the
change in volume of each fluid.

0Q.(11) A fluid in a cylinder is at‘apressure of ( 700x10° n/m* ). It is
expanded at constant pressure from‘a.volume of ( 0.28 m®) to a volume of
(1.68 m*). Determine the work done:

0Q.(12) One Kmole of a gdsat ( 27°C ) expands isothermally until its volume
is doubled. Find the work.done.

0.(13) Work deneyin a thermodynamic cycle. One mole of an ideal gas
goes through the“thermodynamic cycle shown in fig. if ( Pa = 2x10* pa,
Pp = 1x10* pa, M= 0.25 m? and Vg = 0.5 m*), find the work done along the
path, a// AB, b/ BC, C// CD, d// DA, and e/l ABCDA.

pn

A B8
pA---+- .; T
'OD'--- - t -

Dl IC
. U
V/‘I V,q v

15
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Q.(14)  The volume of a glass beaker is ( 200 Cm® ) which was filled with
mercury at the temperature of ( 20° C ). How much the mercury is spilled,
when the temperature of the system is raised to ( 100° C )2
The coefficient of cubical expansion for glass is 1.2x10°/°C
The coefficient of cubical expansion for Hg is 18.1x10°/°C,

Q.(15) At constant temperature, increase the pressure from Zero to
(1000 atm. ) on ( 10 gm ) of Cu. Determine the work done if the density of Cu
is (8.93 gm/Cm?), and coefficient of compressibility is ( 0.716x10° atm.™).

Q.(16) Determine the work done at vaporization (100gm ) of CsHgat the
pressure of ( 1 atm. ), and the boiling point of it is ( 80.2° C ).\(=molecular
weight of CsHg is 78).

Q.(17) Find the work done for one mole of an ideal gas‘at,constant pressure
P, where is expanded by rising the temperature of one.degree.

Q.(18) Find the work done for ( 75 kgm. ) of waterwhen it is compressed
from (140 Kpa ) to ( 7.5 Mpa ) at constant temperature ( 40°C ). If the
specific volume of water at the temperature ( 40°C’), and the initial pressure
was ( 1.0078 Cm®/gm ) and at the final pressure was ( 1.0045 Cm®*gm )

16



