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CHAPTERS 6 
 

THE SECOND LAW OF THERMODYNAMICS 
 

The second law of thermodynamics. Consider the following three processes. (1) 

Two blocks at different temperatures are brought in contact with each other but are 

thermally insulated from their surroundings. The two blocks eventually come to the 

same temperature and the heat flowing out of the warmer block equals that flowing 

into the colder. (2) A rotating flywheel is brought to rest by friction in its bearings. 

The temperature of the wheel and bearings rises and the increase in their internal 

energy is equal to the original kinetic energy of the flywheel. (3) An ideal gas 

performs a free expansion through a stopcock into an evacuated vessel. The 

temperature remains constant. But the final pressure is less than the original pressure 

and the final volume is greater. In each of these processes, according to the first law 

or the principle of conservation of energy, the total energy of the system involved 

remains constant. Also, given the initial conditions, we know that the processes will 

take place as de-scribed above.  

Now suppose we start with the three systems in the end states of the above 

processes, and imagine the processes to take place in reversed order. In the first 

example, one of the blocks would spontaneously become cooler and the other warmer 

until their original temperatures were restored. In the second, the wheel and bearings 

would cool down and the flywheel would start rotating with its original kinetic 

energy. In the third, the gas would rush back through the stopcock and compress itself 

into its original container. Everyone realizes that these reversed processes do not 

happen. But why not? The total energy of each system would remain constant in the 

reversed process as it did in the original, and there would be no violation of the first 

law. There must therefore be some other natural principle, in addition to the first law 

and not derivable from it, which determines the direction in which a process can take 

place in an isolated system. This principle is the second law of thermodynamics. Like 

the first, it is a generalization from experience and is a statement that certain 

processes such as those above, which would be entirely consistent with the first law, 

nevertheless do not happen.  

These three impossible processes were selected as illustrations because they 

appear at first sight to differ widely from one another. The first is characterized by a 

spontaneous flow of heat from one body to another at a higher temperature. In the 

second, heat flows out of an object and an equivalent amount of kinetic energy 

appears. In the third, the volume of an isolated sample of gas decreases and its 

pressure increases while it’s temperature remains constant. Many other illustrations 
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could be given. In the field of chemistry, for example, oxygen and hydrogen gas in 

the proper proportions can be enclosed in a vessel and a chemical reaction can be 

initiated by a spark. If the enclosure has rigid nonheat-conducting walls the internal 

energy of the system remains constant. After the reaction has taken place the system 

consists of water vapor at a high Temperature and pressure, but the water vapor will 

not spontaneously dissociate into hydrogen and oxygen at a lower temperature and 

pressure.  

Can we find some feature which all of these dissimilar impossible processes 

have in common? Given two states of an isolated system, in both of which the 

internal energy is the same, can we find a criterion that determines which is a possible 

initial state and which a possible final state of a process taking place in the system? 

What are the conditions under which no process at all can occur, i.e., when a system 

is in equilibrium? These questions could be answered if there existed some property 

of the system, that is, some function of the state of the system, which had a different 

value at the beginning and at the end of a. possible process. This function cannot be 

the internal energy, since this is constant in an isolated system. A function having the 

desired property can be found, however. It was first devised by Claudius and is called 

the entropy of the system. Like the internal energy, it is a function of the state of the 

system only and, as we shall prove, it either increases or remains constant in any 

possible process taking place in an isolated system. In terms of entropy, the second 

law may be stated:  

Processes in which the entropy of an isolated system would decrease do not 

occur, or, in every process taking place in an isolated system the entropy of the 

system either increases or remains constant. 

 Furthermore, if an isolated system is in such a state that its entropy is a 

maximum, any change from that state would necessarily involve a decrease in 

entropy and hence will not happen. Therefore the necessary condition for the 

equilibrium of an isolated system is that its entropy shall he a maximum.  

Notice carefully that the statements above apply to isolated systems only. It is 

quite possible for the entropy of a no isolated system to de-crease in an actual process 

but it will always be found that the entropy of other systems with which the first 

interacts increases by at least an equal amount.  

To understand why the entropy function exists and what its properties are, we 

first state the second law in more familiar terms. Many different statements can be 

made, all of them to the effect that some specified process is impossible. All such 

statements can be shown to be equivalent. Two useful formulations are the following: 
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               Clausius                                                   Kelvin 

                  ( a )                                                         ( b ) 

 

FIG. 1. Schematic diagrams of the impossible processes referred to in (a) the Clausius 

and (b) the Kelvin statement of the Second Law. 

  

I. No process is possible whose sole result is the removal of heat from 

reservoir at one temperature and the absorption of an equal quantity\ of 

heat by a reservoir at a higher temperature. 

II.  II. No process is possible whose sole result is the abstraction of heat from 

a .single reservoir and the performance of an equivalent amount of work.  

 

The former is known as the Claudius statement of the second law, and the latter as 

the Kelvin (or Kelvin-Planck) statement. The impossible processes are shown 

diagrammatically in Fig. 1(a) and (b).  

That the Kelvin and Claudius statements of the second law are equivalent may be 

shown a's follows. The proof consists of showing that if it were possible to violate 

one statement of the law, the other would or could be violated also. Suppose we have 

a cyclic heat engine that violates the Kelvin statement, that is, it takes in heat from a 

single reservoir at constant temperature and converts it completely to mechanical 

work. We could use the work output of this engine, represented by the rectangle in 

Fig. 2(a), to drive a refrigerator (not necessarily a Carnet refrigerator) as illustrated in 

the figure. The latter, if it is a refrigerator at all, takes in less heat from its low 

temperature reservoir than it delivers to its high temperature reservoir. A part of the 

heat it delivers to the high temperature reservoir can be diverted as shown to furnish 

the heat input to the engine, while there remains an outstanding flow of heat from a 

low to a high temperature reservoir. The device would operate continuously, with the 
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engine providing just enough work to run the refrigerator, but would violate th6 

Claudius statement of the second law. 

 On the other hand, suppose we had a continuous flow of heat from a low to a high 

temperature reservoir, in violation of the Claudius statement, as illustrated by the left 

pipe line in Fig. 2(b). We could then operate an engine (any heat engine) between the 

two heat reservoirs. Whatever its efficiency, this engine takes in more heat than it 

rejects. Let it reject heat at the same rate at which heat flows upward from the low to 

the high temperature reservoir,, and take in enough additional heat from the high 

temperature reservoir to provide for its output of mechanical work. This system will 

also operate continuously, and it will be seen that its sole outstanding result is to 

withdraw heat from a single reservoir and convert it completely into mechanical 

work, in violation of the Kelvin statement. Therefore the two statements are 

equivalent.  

A cyclic device which would continuously abstract heat from a single reservoir 

and convert the heat completely to mechanical work is called a perpetual motion 

machine of the second kind. Such a machine would not violate the first law (the 

principle of conservation of energy) since it would not create energy, but 

economically it would be just as valuable as if it did so, because of the existence of 

heat reservoirs, such as the oceans or the earth's atmosphere, from which heat could 

be abstracted continuously at no cost. Hence the second law is sometimes stated: “A 

perpetual motion niacin of the second kind is impossible.” 

 

        
                       ( a )                                                       ( b ) 

 

 

 FIG. 2. Proof of equivalence of Claudius and Kelvin statements of Second Law.  
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Efficiencies of reversible engines. We next derive two important consequences of 

the second law: 

 (a) No heat engine operating in cycles between two reservoirs at constant 

temperatures can have a greater efficiency than a reversible engage operating between 

the same two reservoirs. 

 (b) All reversible engines operating between two reservoirs at constant 

temperatures have the same efficiency. 

 

                          
                                                         ( a ) 

 

                   
                                   ( b ) 

FIG. 3. No engine can be more efficient than a reversible engine operating between   

            the same two temperatures. 
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Note that a reversible engine which absorbs heat at a single temperature and 

rejects heat at a single (different) temperature is necessarily a Carnot engine and its 

cycle is bounded by two isothermals and two adiabatic.  

The method of proving the statements above is to show that if they were not 

true, either the Kelvin or the Claudius statement of the second law would be violated.  

In Fig. 3(a), the circle represents a reversible engine operating between two 

reservoirs at temperatures 
2T  and 

1T , taking in heat 
2Q from the reservoir at 

temperature 
2T , rejecting heat 

1Q  to the reservoir at temperature 
1T , and doing 

work 12 QQW  . (We are considering both 
2Q  and 

1Q  as positive 

quantities.) The efficiency of this engine as shown is about 50%. The rectangle at the 

right of the diagram represents an assumed engine having a higher efficiency than the 

reversible engine (about 75%). We assume that the engines are built or operated so 

that each delivers the same mechanical work. (This could be the work per cycle or the 

work in some whole number of cycles.) Since the engine at the right is assumed to 

have a higher efficiency than the reversible engine, it takes in less heat from the high 

temperature reservoir and rejects less to the low temperature reservoir.  

Now since the reversible engine is reversible, it can be reversed in the 

thermodynamic as well as the mechanical sense. That is, it can be operated as a 

refrigerator with no changes in the magnitudes of 
2Q , 

1Q , and W . Let us 

therefore couple the assumed high efficiency engine to the other engine operated in 

reverse as a refrigerator, as in Fig. -3(b). It should be evident from the diagram that 

the device will run itself and will result in a transfer of heat from a lower to a higher 

temperature, in violation of the Claudius statement of the second law. Therefore the 

efficiency of the assumed engine cannot be greater than that of the reversible engine. 

          Now suppose that two engines, both reversible, have different efficiencies 

when operated between two given temperatures. Let the one with the higher 

efficiency, operated as an engine; drive the one with lower efficiency as a 

refrigerator. The diagram is the same as Fig. 3(b) and the second law is violated. 

Hence neither engine can have a higher efficiency than the other, which means that 

their efficiencies are equal.  

Notice carefully that we have not proved that the efficiency of an irreversible 

engine is lower than that of a reversible engine but only that no engine, reversible or 

not, can have a higher efficiency than a reversible engine. We shall show, however, 

that the efficiency of an irreversible engine actually is lower than that of a reversible 

one operating between the same two temperatures. 
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The Kelvin temperature scale. The conclusions drawn in the preceding 

section regarding the efficiencies of reversible engines were used by Kelvin to define 

a temperature scale that is independent of the properties of any particular 

thermometric material.  

We showed in chapter-5 that when a Carnot engine using an ideal gas as the 

working substance is operated between two reservoirs at different temperatures, and 

when the temperatures of these reservoirs are measured by a gas thermometer using 

an ideal gas, the ratio of the heat absorbed to the heat rejected is equal to the ratios of 

the temperatures. 

1

2

1

2

T

T

Q

Q
                        --------------       ( 1 )       

 We have shown before that even if the working substance is not an ideal gas, 

the efficiencies of all Carnot engines operating between the same two temperatures 

are the same. That is, whatever the nature of the fluid in the cylinder in Fig. 5- , if 

heat 
2Q , is taken in at the higher temperature, the same amount of heat 

1Q  will be 

rejected at the lower temperature. The ratio 

1

2

Q

Q
is therefore independent of the 

nature of the working substance. The same is not true of the temperature ratio 

1

2

T

T
, 

if temperatures are measured by thermometers utilizing different materials. A 

constant volume helium thermometer, for example, filled to a finite pressure 
iP  at 

the ice point, will give a different value for the ratio 

1

2

T

T
than will a constant volume 

hydrogen thermometer and neither ratio will equal the ratio of the heat absorbed to 

the heat liberated by a Carnot engine. 

 Kelvin proposed that we use a Carnot engine as a thermometer and define the 

ratio of two temperatures as the ratio of the heat absorbed by the engine to the heat 

rejected, when the engine is operated between reservoirs at these temperatures. Then 

the equality  

 

1

2

1

2

T

T

Q

Q
                        --------------       ( 2 )      
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becomes a matter of definition, and the fundamental problem of thermometry, that of 

establishing a temperature scale, reduces to a problem in calorimetric. That is, the 

experimental quantities that are measured in determining an unknown temperature are 

quantities of heat rather than pressures, volumes, lengths, etc. Temperatures defined 

in this way are called Kelvin temperatures: Since Eq. (2) has been shown to be 

satisfied if temperatures are measured by an ideal gas thermometer, it follows that the 

ideal gas temperature scale and the Kelvin scale are identical. 

A definition of the ratio of two temperatures alone does not completely define 

the temperatures. They can be completely defined by assigning an arbitrary value to 

the difference between any two temperatures. We therefore say arbitrarily that the 

difference between the Kelvin- temperatures of the steam and ice points shall be 

exactly 100 degrees, and the Kelvin scale, as the term is ordinarily used, should 

properly be called the Kelvin centigrade scale. In engineering work, a difference of 

180
o
 is assigned to the steam point-ice point interval, with the same definition of the 

ratio of two temperatures, and the scale is called the Rankin scale. The size of the 

Rankin degree is the same as on the Fahrenheit scale. 

 As an example, suppose we wish to determine the temperature of a tank of 

water, using a Carnot engine as the only thermometer. As auxiliary equipment we 

require a heat reservoir at the steam point (of course, no thermometer is needed to 

ensure that it is at. the steam point), a heat reservoir at the ice point (again no 

thermometer is required), and a calorimeter for measuring heats absorbed and 

liberated by the Carnot engine. Even the calorimeter does not require the use of a 

thermometer. For example, the heat withdrawn from the reservoir at the steam point 

can be measured by measuring the input of electrical energy to a heating coil that 

keeps the reservoir at the steam point as heat is withdrawn. Let 
ST , 

iT , and 

T represent, on the Kelvin scale, the steam point temperature, ice point temperature, 

and the temperature of the tank of water. All of these, including steam point and ice 

point, are unknown at the start of the experiment.  

We first carry out a Carnot cycle between the reservoirs at the steam point and 

the ice point. Let 
SQ , and 

iQ represent the quantities of heat absorbed and rejected. 

Then carry out a second cycle between the reservoir at the steam point and the tank of 

water (we could equally well use the tank of water and the reservoir at the ice point) 

and for simplicity let us take in the same amount of heat 
SQ , at the steam point. Let 

Q  be the heat rejected at the unknown temperature T . We then have the following 

equations:  
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i

S

i

S

T

T

Q

Q
   ,        

T

T

Q

Q SS   ,    reesTT iS deg100  

The quantities 
SQ , 

iQ , and Q  are known from experiment and we have 

three equations from which to determine the three unknowns 
ST , 

iT , and T . 

No one has ever measured a temperature in the manner described above. The 

Kelvin temperature scale is established by correcting the readings of a gas 

'thermometer to what they would be if the gas were ideal, or by equivalent procedures 

for temperatures above and below the range accessible to gas thermometry. (By 

"establishing" the scale is meant that a large number of fixed temperatures such as the 

steam point, ice point, freezing point of gold, etc., are carefully measured once and 

for all.) This correction can be made from certain equations derived from the second 

law, and the experiments involved in ascertaining the magnitudes of the corrections 

require the measurement of quantities of heat. Hence the measurements reduce 

essentially to problems in calorimetric, as stated above, although the calorimetric is 

less direct than in our idealized experiment. 

 A Carnot engine operated in reverse becomes a. Carnot refrigerator. Since all 

processes are reversible, the ratio of the heat 
1Q  absorbed from the reservoir at the 

lower temperature 
1T , to the heat 

2Q  rejected to the reservoir at the higher 

temperature 
2T , is equal to the ratio of the temperatures,  

2

2

1

1

T

Q

T

Q
  

The work W required to operate the refrigerator, from the first law, is  

12 QQW   

and the coefficient of performance is  

12

1

12

11

TT

T

QQ

Q

W

Q
E





  

The coefficient of performance is independent of the nature of the working substance.  

           It is left as a problem to show by the method used before that no refrigerator 

operating between two given temperatures can have a greater coefficient of 

performance than a Carnot refrigerator.  
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Absolute zero. It follows from the definition of temperature on the Kelvin 

scale that Kelvin temperatures of zero degrees or less cannot exist. Consider a Carnot 

engine operated between a reservoir at a fixed temperature 
2T  and a second reservoir 

at a lower temperature 
1T . Let 

The engine takes in heat 
2Q  from the reservoir at temperature 

2T . The mechanical 

work W  done by the engine, from the first law, is  

12 QQW   

And from the definition of Kelvin temperature,  

 

2

1
21

T

T
QQ  ,        Hence    

2

1
22

T

T
QQW  ,   and 











2

21 1
Q

W
TT              ----------------      ( 3 ) 

The larger the work W , the lower the temperature 
1T . But from the second 

law.  

2QW  

Since the engine cannot convert to work all of the heat supplied to it. Therefore the 

term in parentheses in Eq. (3) is always greater than zero. and hence the lowest 

attainable temperature is greater than zero. In other words, a temperature of absolute 

zero or less is unattainable.  

 

The Clausius-Clapeyron equation. To state the fact that all Carnot 

engines operated between two given temperatures have the same efficiency is one 

way of stating the second law of thermodynamics. We shall put this law in a more 

useful analytical form in a later section, but many of its consequences can be deduced 

directly from the statement above. 

 A Carnot cycle is any reversible cycle bounded by two isotherms and two 

adiabatic. The working substance need not be an ideal gas. It may be a real gas, a 

liquid, a solid, or changes in phase may take place during the cycle. By considering a 

Carnot engine operated between two reservoirs differing infinitesimally in 

temperature, and by letting the 
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FIG. 4. Infinitesimal reversible cycle used to derive Clausius-Clapeyron 

            equation.  

 

Working substance undergo a change in phase, we can derive an important 

relation known as the Clausius-Clapeyron equation, giving the slope of the) 

equilibrium lines in a pressure-temperature diagram.  

We shall describe a cycle in which the phases in equilibrium are liquid and 

vapor, but the same argument can be applied to the solid-vapor or solid-liquid 

equilibrium. The cycle is indicated by shading in Fig. 4(a) and the Carnot engine is 

shown in Fig. 4(c). The initial state of the system is represented by point a in Fig. 4(a) 

and by part (a) of Fig. -4(c). The cylinder of the Carnot engine contains a liquid and 

vapor in equilibrium at temperature T  and pressure 
23p . The specific volumes of 
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the liquid and vapor phases are respectively " and ''' .We first carry out an 

isothermal expansion at temperature T  until an arbitrary mass m  has been 

vaporized, at which time the state of the system is represented by point b in Fig. 4(a) 

and by part (b) of Fig. 4(c). The pressure remains constant in this part of the cycle. 

The mass m , while in the liquid phase, occupied a volume "m and in the vapor 

phase it occupies a volume '''m . The increase in volume of the system is therefore 

)"'''(  m . The heat Q absorbed by the system in this part of the cycle is the 

product of the mass m  and the latent heat of vaporization 
23l . 

 In the next stage of the cycle, the cylinder at temperature T  and pressure 

23p  is transferred to an insulating stand, and a very small adiabatic expansion is 

carried out. The work done is negligible and, of course, no heat is absorbed, but the 

temperature drops to )( dTT and the pressure to )( 2323 dpp  . The state of the 

system is now represented by point c in Fig. 4(a).  

The cylinder is next moved to a heat reservoir at temperature )( dTT and 

an isothermal and isobaric compression is carried out, taking the system to point d in 

Fig. 4(a). A final adiabatic compression returns the system to point  a.  

We have shown that the efficiency of any Carnot cycle is 

                           

2

12

2

12

2 T

TT

Q

QQ

Q

W 



   

 

       In the present infinitesimal cycle, this becomes  

                         
T

dT

Q

Wd


/

,    

where Q  is the heat absorbed at the higher temperature and is given by 

          23mlQ       

If the small volume changes in the adiabatic processes are neglected, the net 

work Wd /  done in the cycle is the area of the shaded "rectangle" in Fig. 4(a), 

whose base is )"'''(  m and whose height is   
23dp  
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23
/ )"'''( dpmWd   . 

Then    
T

dT

ml

dpm

Q

Wd





23

23
/ )"'''( 

, 

and     
 '''''

2323

 


T

l

dT

dp
             --------------       ( 4 ) 

 

This is one form of the Clausius-Clapeyron equation. It expresses the slope of 

the vapor pressure curve at any temperature in terms of the temperature, the latent 

heat of vaporization at that temperature, and the specific volumes of vapor and liquid. 

When the same reasoning is applied to the solid and vapor or solid and liquid phases, 

one obtains the corresponding equations: 

 

 ''''

1313

 


T

l

dT

dp
,      

 '''

1212

 


T

l

dT

dp
. 

 
Although the latent heat of any transformation varies with temperature, it is 

always positive, as is the temperature T . Also, the specific volume of the vapor 

phase is always greater than that of both the liquid or solid phase and the quantities 

)"'''(   and )''''(   are always positive. The slopes of the vapor pressure 

curves and sublimation pressure curves are therefore always positive. The specific 

volume of the solid phase, however, may be greater or less than that of the liquid 

phase, and so the slope of the solid-liquid equilibrium line may be either positive or 

negative. We can now understand more fully why the Tp  surface for a 

substance like water, which expands on freezing, differs from that for a substance 

which contracts on freezing. The term )'''(   is negative for a substance that 

expands on freezing and is positive for a substance that contracts on freezing. 

Therefore the solid-liquid equilibrium surface, or its projection as a line in 

the Tp plane, slopes upward to the left for a substance like water that expands and 

up-ward to the right for .a substance that contracts. Projections of the liquid-vapor 

and solid-vapor surfaces always have positive slopes.  

For changes in temperature and pressure that are not too great, the latent heats 

of transformation and the specific volumes can be considered constant, and the slope 
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of an equilibrium line can be approximated by the ratio of the finite pressure and 

temperature changes, 

T

p




. Thus the latent heat at any temperature can be found 

approximately from measurements of equilibrium pressures at two nearby 

temperatures, if the corresponding specific volumes are known. Conversely, if the 

equilibrium pressure and the latent heat are known at any one temperature, the pres-

sure at a nearby temperature can be calculated. In calculations of this sort we usually 

assume that the vapor behaves like an ideal gas.  

To integrate the Clausius-Clapeyron equation and obtain an expression for the 

pressure itself as .a function of temperature, the heats of trans-formation and the 

specific volumes must be known as functions of temperature. This is an important 

problem in physical chemistry but we shall not pursue it further here except to 

mention that if variations in latent heat can be neglected, and if one of the phases is a 

vapor, and if the vapor is assumed to be an ideal gas, and if the specific volume of the 

liquid or solid is neglected in comparison with that of the vapor, the integration can 

be readily carried out. The resulting expression is  

p

RT
T

l

dT

dp


   ,     2T

dT

R

l

dp

dp
  

 

C
RT

l
p lnln     ---------    ( 5 ),     

RT

l

Cep



 

 

In ch.8 we shall give a more formal derivation of the Clausius-Clapeyron 

equation. The derivation above was given at this point, to show how an important 

consequence of the second (and first) law can be deduced in a very simple way.  

 

Derivation of Stefan's law.  As another example of the second law, we use 

it to derive Stefan's law for an ideal radiator. This law as ; usually given in 

elementary texts states that the total rate of emission of radiant energy by an ideal 

radiator or blackbody is proportional to the 4th power of the Kelvin temperature. It 

can be shown from this that the radiant energy density, or radiant energy per unit 

volume, within an en-closure whose walls are at a uniform temperature, is also 
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proportional to the 4th power of the Kelvin temperature, provided there is in the en-

closure at least a speck of perfectly absorbing material, so that the frequency 

distribution of the radiant energy is always that given by Planck's law. tinder these 

conditions the energy density is a function of the temperature only, and the internal 

energy can be identified with the radiant energy. 

Both the classical and quantum theories of radiation predict that when 

homogeneous isotropic radiant energy falls on a perfectly reflecting surface it exerts 

on the surface a pressure equal to 1/3 of the energy density. Imagine an evacuated 

cylinder whose walls are perfectly reflecting thermal insulators, containing a "batch" 

of radiant energy which can be expanded or compressed like a gas. Provision is made 

for a flow of heat into or out of the cylinder, and a speck of perfectly absorbing 

material is included. 

Let the radiant energy in the cylinder be carried through the Carnot cycle in 

Fig. 5. Process ab is an isothermal expansion at the temperature T , bc is an 

infinitesimal adiabatic expansion in which the temperature drops to dTT , cd is 

an isothermal compression, and da is an adiabatic compression. Let e represent the 

energy density, so that  

 

 ep
3

1
                   --------------     ( 6 ) 

 

The work W  done by the system in the isothermal process ab is  
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    1212
3

1
VVeVVpW   

 Since the energy density is a function of the temperature only, it remains constant in 

this process and the change in internal energy is  

  1212 VVeUU  . 

From the first law, the heat Q  flowing into the system is 

   1212
3

4
VVeWUUQ   

 

 The net work Wd / done in the cycle is the shaded area in Fig. 5, or 

  12
/ VVdpWd  . 

  

From Eq. (.6),  

 ep
3

1
               SO.              12

/

3

1
VVdeWd   

From the second law, the efficiency of the cycle, 

Q

Wd /

, is equal to 

T

dT
, or  

  

 

  T

dT

VVe

VVde







12

12

3

4
3

1

,            
T

dT

e

de
4  

Hence  

    

   .ln4ln constTe  ,     

    4. Tconste     

The energy density is therefore proportional to the 4th power of the Kelvin 

temperature. 
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Questions 
 

 

Q.(1)    A Carnot engine absorbs heat from a reservoir at a temperature of 100
o
c  and 

reject heat to a reservoir at a temperature of 0
o
c. If the engine absorbs 1000 Joules 

from the high temperature reservoir, find :  1-the work done   2- The heat rejected  

3- The efficiency. 

 

 

Q.(2)   Which is the more effective way to increase The efficiency of a Carnot 

engine, to increase the temperature T2, keeping T1 fixed , or to decrease the 

temperature T1, keeping T2 fixed? 

 

 

Q.(3)    A refrigerator having a coefficient of performance one –half as great as that 

of a Carnot refrigerator is operated between reservoirs at temperatures of 200 k and 

400k, and it absorbs 600 joules from the low temperature reservoir. How much heat 

is rejected to the high temperature reservoir? 

 

 

Q.(4)    A Carnot refrigerator or heat pump is operated between reservoirs at 0
o
c and 

100
o
c. a// If 1000 joules are absorbed from the low temperature reservoir, how many 

joules are rejected to the high temperature reservoir?  b// What is the coefficient of 

performance? 

 

 

Q.(5)    The temperature in a house hold refrigerator is 0
o
c and the temperature of 

the room in which it is located is 25
o
c. The heat flowing in to the refrigerator from the 

warmer room every 24 hours is 8*10
6
 joules (enough to melt about 50Ib of ice) and 

this heat must be pumped out again if the refrigerator is to be kept cold. If a Carnot 

refrigerator were available, operating between the temperature of 0
o
c and 25

o
c, how 

much mechanical power in watts would be required to operate it? Compare the daily 

cost, at 2 cents per kwh, With the cost of 50Ib of ice (about 40 cents in 

Cambridge) . 
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is carried around the closed Rc
2

3
monatomic ideal gas  a ne mole ofO    Q.(6)

cycle abc in Fig.. Process bc is a reversible adiabatic expansion. Given that Pb =10 

atm., Vb=2m
3
, and Vc=4m

3
, 

a// Compute the heat input to the gas, the heat output, and the efficiency of the cycle. 

b//What is the maximum efficiency of an engine operating between the extremes of 

temperature of the cycle? 

 

                                         
 

and normal latent heat of  c
o

100Taking the normal boiling point of water as     Q.(7)
vaporization  540calories, calculate the elevation of the boiling point for an increase 

of pressure of one atmosphere. One gram of system occupies a volume of 1677 cm
3
. 

 

Q.(8)    The normal melting point of ice is 0
o
c and the latent heat of fussion 80 

calories. If 1cm
3
 of water on solidification has a volume 1.091 cm

3
, calculate the 

depression of the freezing point for an increase of pressure of one atmosphere. 

 

Calculate the radiant energy (energy density) emitted by a black body at a     Q.(9)
temperature of  

a// 200 k,    b// 4000 k. Stefan
’
s constant  C= 5.67*10

-8
 M.K.S.units. 
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rion constellation is 1700 times that of our sun. OStar in  lLuminosity of Rige  Q.(10)
If the surface temperature of the sun is 6000k, Calculate the temperature of the star. 

 

and at a temperature of  
3

200cmA metallic ball having a surface area of     Q.(11)
527

o
c is placed in an enclosure at 27

o
c . If the surface emissivity of the metal is 0.4, 

Find the rate at which heat is lost by the ball  C=5.67*10
-5

 ergs. cm
-2

sec
-1

.c
-4

 

 

Q.(12)     How watts of energy are required to keep a black body in the from of a 

cube with 1cm, side at  a// 500
o
k and  b//2000

o
k. Assume that the surrounding walls 

are at temperature of 300
o
k, Stefan

,
s constant  σ = 5.67*10

-8 
erg/ cm

2
/sec/deg

4
 . 

 


