3-5: Electric Flux Density ( Electric Displacement): To demonstrate the
concept of the electric flux density, the following simple experimental steps are
required:

(1). Suppose apply an amount of charge ( +Q) to a metallic sphere of radius (a),
(2). enclose this charged sphere using a pair of connecting hemi-spheres with
radius (b), (b>a), being very careful not to ever let any part of the outer sphere come

in contact with the inner sphere,

(3). briefly ground the outer sphere,

(4). Then remove the ground connection and finding that (- Q) of charges has
accumulated on the outer sphere. Somehow, the (+Q) charge of the inner sphere has
induced the (- Q) charge on the outer sphere.
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Then we can say that the electric flux (¥) in Coulombs begins at the (+Q) charge and
terminate at the (-Q) charge. These lines will be radially directed away from the inner
sphere to the outer sphere and will be spread themselves out to get maximum
separation between the like charges on each sphere.

Considering that the flux lines pass through a spherical surface A47r? inthe region between
the sphere, we can define the electric flux density B jn (C/m?) as:

g, = permittivity of free space

=__Q . : e

E=o— = g, =relative permittivity

D=c E in free space ¢ =dielectric constantof the medium
D=¢ E in material medium s =&

E=€, &, -

(P), is the number of electric flux lines and it equals to the amount of (+ Q) charges
emanating electric lines, then:



These equations indicate that the electric field intensity and electric flux

density are related to each other through the permittivity of the medium and
are pointed to the same direction.

However, the amount of flux passing through a surface is given by the product of f)

and the amount of surface ds normal to D According to the figure shown below,
we can see that the flux is given by:

5=V 1a,=Y 4 =y =5-5=[D|is cos0 - *)

In addition, for arbitrary surface shapes, this equation can be more generalized to
Integration form as:
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3-6: Gauss’s Law and Derivation of 1st Maxwell’s Equation:

If we completely enclose a charge, then
the net flux passing through the enclosing surface must be equal to the
charge enclosed (Q,,..). A formal statement of it is as follows:

“ The net electric flux passing through any closed surface is equal to the total
charge enclosed by that surface and it mathematically written as”:Ff & 4~
D-ds =Q,,.

S

Gauss’s law is very simple compare to coulomb’s law in finding electric field
intensity for a given charge distributions of high degree of symmetry.

Q=[pdv —————— ) and Q=y={D-ds ——————- (2)
hence : Ipvdv = {f)-(?é ———————————— (3)

and according to divergence theorem :
hence:_[pvdv:§§-f)dv = V-D=p,

—_ —

V-D=p, : is called first Maxwell’s equation in point form.

jpv dv = §D -as is called first Maxwell’s equation in integral form.
\' S



This equation means that ( or states that), *“ The divergence of the electric flux
density at a given point per unit volume is equal to the charge density at

that point”.

+ existance of Source (+Q) V-D=p,
V-D=:0 neither source norsink D=cE
— existance of sink (—Q) . Q
E > g
‘ ‘ dreR
, . " Q= I p, dv
' \ i |

Gauss’s law is an alternative statement of Coulomb’s law, proper application of the
divergence theorem to Coulomb’s law results in Gauss’s law.

To successfully apply Gauss’s law, the surface (S) should be chosen such that, from
symmetry considerations, the magnitude of |[D is constant and its direction is normal or

tangential at every point of each surface of (S).




3-7: Gauss’s Law and its Application:
Gauss’s law provide an easy means of
finding Eand D for uniform symmetrical charge distributions such as: [
point charge, infinite line charge, infinite sheet charge.......... ]-

3-7-1: Application on Point Charge:
Suppose a point charge (Q) is located at the origin.

To determine D at a point P | itis easy to see that choosing a spherical surface
containing (P) will satisfy symmetry conditions. Thus, a spherical surface centered
at the origin is the Gaussian surface in this case as shown below:
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3-7-2: Application on Line Charge:

Suppose the infinite line of uniform charge lies
p (C/m) along the Z—aXIS . Determine electric flux density at point (P) as
indicated in the figure below, by using Gauss’s law.
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3-7-3: Application on Infinite Plane Sheet Charge:

, Consider the infinite sheet of uniform
charge density #s (C/m?) lying on the z=0- plane . Determine ( p) at point (P)
using Gauss’s law.

We choose a rectangular box that is cut symmetrically by the sheet of charge and
has two of its faces parallel to the sheet as shown in figure. As (D=D, 4) is normal
to the sheet, and applying Gauss’s law gives:

ff)-aéz D-ds+ {f)-&:Qenc . ds =dxdya,
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3-7-4: Application on Spherical Charge:

Consider a sphere of radius (a) with a uniform
volume charge density 2, (C/m®) . Determine the electric flux density (D)
everywhere using Gauss’s law.

We construct Gaussian surface for cases F=<a@ and r2a ggparately. Since the
charge has spherical symmetry, it is obvious that a spherical surface is an
appropriate Gaussian surface.

(1). For case [lSSN@ll the total charge enclosed by the spherical surface of radius (r), is:

e —_—

D-ds=Q ds =r?sin@dodga, ,  D=D,a |, Qenc=f,ovdv

enc !

0 ——y
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Y 41
Q.. = , r’sin@drd@dg=p, —r° ————— (2)
!Mp p=p,
— r . r .
From eqgs.(1) and (2) we get: szé a, and hence E:I[:)),V a,
g



(2). For f=2a , the Gaussian surface is shown in figure (b).

The charge enclosed by the surface is the entire charge and is given by:

.ds=Q,. , ds=rsin@dodga

From egs.(1) and (2) we get:

and hence




The graphical representation of the value of the electric
field intensity as a function of the Gaussian radius of a
spherical charge is illustrated in this figure:
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3-7-5: Application on Infinite Coaxial Cable:

Consider a coaxial cable of inner radius (a)
and outer radius ( b ) as shown in figure. For practice in using Gauss’s law, however,
we will assume the charge on the inner conductor has a uniformly positive volume
charge density of p (C/m®) , and the outer conductor is grounded. Our task is to
find the electric flux density everywhere.

To begin, we notice from the symmetry of the problem that D only appears to be a
function of ( 2 )only:

(1). For the case at £ =@

{D-Es’:Qem . ds=pdzdga, . D=D,a
27h
§ s=[[D,4,-pdzdga,
00
§D-ds=D,(27ph) —————————- 1)
S 2rh p
Que = [ [ [ £y P dp dz dp=p, (zp*h) -~~~ 2)
000

From eqgs.(1) and (2) we get: D=p, g a, and hence E=p, 2—'[; a,
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(2). For the case at a< p<b

{D-ds=Q,, . ds=pdzdga,

2 2

. a’ . _
From egs.(1) and (2)weget: D=p,—a, and hence E=p,
20 2 p

a,

(3). For the case at o =D

Since outer conductor is tied to ground, we know from Faraday’s experiment
that the charge on this conductor is (-Q). Then the total net charge enclosed by
this third Gaussian surface is therefore zero ( Q.,.= zero) and hence:

—

D =Zero



Example: The volume in cylindrical coordinates betweenp=2m and p=4m
3 , . =
contains a uniform charge density 2, (C/m”) . Use Gauss’s law to find D
in all region ?

Solution

(1). For 0<p<2m

§ D-ds =Q, = j pdv————————— Gauss's law
S Vv

2L

Since there is no charges in this region
Equating eq.(1) with (2) we get:



(2). For 2< p<4m

Equation (1) is remain the same as in the first case, while the total charge
enclosed is calculated as:

27 2

Qenc = ! !!pv pdpdgdz= p, [pzj\f(h) (L) =p, 7L(p* -4)

Qenc = Py 72-'—(102 _4) _________ (4)
Equating eq.(1) with (4) we get:

5 -
D,(2zLp)=(p, 7 L(p"-4) >= D=




(3). For p=4m

Equation (1) is remain the same as in the first and second cases, while the total charge
enclosed is calculated as:

L274 2 4

Qenc =ijvpdpd¢d2= Py % | (27) (L) = p, 7L (16— 4)
0 02

Qenc =12,0V7Z'|_ _________ (6)

Equating eq.(1) with (5) we get:

~ 610v A
D,(2zLp)=12p, 7L == D= . a,——(7)




Home work

Q,/ Charge is distributed in the spherical region r<2m with density: p, = —r2200 (uC/m®)
. What net flux crosses the surfaces, r=1m , r=4m and r=500m ?

Q,/ A point charge Q is at the origin of spherical coordinate and a sphere shell charge distribution at
r=a has atotal charge of (Q'-Q), uniformly distributed. What flux crosses the surface

r=k for k<a and k>a?

~ . Sing . )
Q./ Given that: P=2pc0s¢ a¢‘3—p¢ a, (C/m*) find the flux crossing the portion of the z=0-plane defined by

0<p<a , 0<4<90° and 270° < ¢ < 360°

A

- 24, +4,
Q,/ A uniform line charge with densit-lies along the x-axis. FindD at: ((321)? Ans. [0.356( 1/5 )

Q¢/ Given charge distribution with density _ in spherical coordinates. Use Gauss’s law to find
? Ans. [3=ng a, (C/m?)



Q,/ Given that: D=500 e ** &, (#C/m?) ,find the flux ¥ crossing surfaces of area ( m*)

normal to the x-axis and located at x=1m , x=5m , and x=10m? Ans. (452303 184)/C|

Q,/ A point charge of . is at the center of spherical coordinate system. Find the flux

which crosses an area of - on a concentric spherical shell of radius _

Qg/ An area of - on the surface of spherical shell of radius -iS crossed by [aoNc]

of flux in an inward direction. What point charge at the origin is indicated ? Ans_



