
3-5: Electric Flux Density ( Electric Displacement):    To demonstrate the 

concept of the electric flux density, the following simple experimental steps are 

required: 

(1). Suppose apply an amount of charge ( +Q) to a metallic sphere of radius (a), 

(2). enclose this charged sphere using a pair of connecting hemi-spheres with 

radius (b), (ba), being very careful not to ever let any part of the outer sphere come 

in contact with the inner sphere, 

(3). briefly ground the outer sphere, 

(4). Then remove the ground connection and finding that (- Q) of charges has 

accumulated on the outer sphere. Somehow, the (+Q) charge of the inner sphere has 

induced the (- Q) charge on the outer sphere. 
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 Then we can say that the electric flux () in Coulombs begins at the (+Q) charge and 

terminate at the (-Q) charge. These lines will be radially directed away from the inner 

sphere to the outer sphere and will be spread themselves out to get maximum  

separation between the like charges on each sphere. 

Considering that the flux lines pass through a spherical surface            in the region between 

 the sphere, we can define the electric flux density                         as:  
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(), is the number of electric flux lines and it equals to the amount of (+ Q) charges 

emanating electric lines, then: 
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These equations indicate that the electric field intensity and electric flux 

density are related to each other through the permittivity of the medium and 

are pointed to the same direction. 

However, the amount of flux passing through a surface is given by the product of  D


and the amount of surface  Dds


tonormal According to the figure shown below,  

we can see that the flux is given by: 
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In addition, for arbitrary surface shapes, this equation can be more generalized to 

integration form as:  
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3-6: Gauss’s Law and Derivation of 1st Maxwell’s Equation:  

                                                                   If we completely enclose a charge, then 

the net flux passing through the enclosing surface must be equal to the 

charge enclosed (Qenc.). A formal statement of it is as follows:  

“ The net electric flux passing through any closed surface is equal to the total 

charge enclosed by that surface and it mathematically written as”:   
enc

S

Q dsD


Gauss’s law is very simple compare to coulomb’s law in finding electric field 

intensity for a given charge distributions of high degree of symmetry.  
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 is called first Maxwell’s equation in integral  form. 



This equation means that ( or states that), “ The divergence of the electric flux 

density at a given point per unit volume is equal to the charge density at 

that point”. 
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Gauss’s law is an alternative statement of Coulomb’s law, proper application of the 

divergence theorem to Coulomb’s law results in Gauss’s law.  

To successfully apply Gauss’s law, the surface (S) should be chosen such that, from 

symmetry considerations, the magnitude of        is constant and its direction is normal or 

tangential at every point of each surface of (S).  
D




3-7: Gauss’s Law and its Application:     

                                                                 Gauss’s law provide an easy means of 
finding                for uniform symmetrical charge distributions such as: [ 
point charge, infinite line charge, infinite sheet charge……….].   
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3-7-1: Application on Point Charge:     
                                                             Suppose a point charge (Q) is located at the origin.  

To determine                                  , it is easy to see that choosing a spherical surface 

containing  (P) will satisfy symmetry conditions. Thus, a spherical surface centered 

at the origin is the Gaussian surface in this case as shown below: 
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3-7-2: Application on Line Charge:     

                                                    Suppose the infinite line of uniform charge lies         

                 along the                   . Determine electric flux density at point (P) as 

indicated in the figure below, by using Gauss’s law.  
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3-7-3: Application on Infinite Plane Sheet Charge:     

                                                                           Consider the infinite sheet of uniform 

charge density                     lying on the                          . Determine (    ) at point (P) 

using Gauss’s law. 

zz âDD 
We choose a rectangular box that is cut symmetrically by the sheet of charge and 

has two of its faces parallel to the sheet as shown in figure. As (            ) is normal 

to the sheet, and applying Gauss’s law gives: 



We construct Gaussian surface for cases                              separately. Since the 

charge has spherical symmetry, it is obvious that a spherical surface is an 

appropriate Gaussian surface. 

arandar 

(1). For case   ar  , the total charge enclosed by the spherical surface of radius ( r ), is: 
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From eqs.(1) and (2) we get:  r
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3-7-4: Application on Spherical Charge:     

                                                          Consider a sphere of radius ( a ) with a uniform 

volume charge density                      . Determine the electric flux density (    ) 

everywhere using Gauss’s law.  



The charge enclosed by the surface is the entire charge and is given by: 

(2). For  ar , the Gaussian surface is shown in figure ( b ). 
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    The graphical representation of the value of the electric 
field intensity as a function of the Gaussian radius of a 
spherical charge is illustrated in this figure: 



3-7-5: Application on Infinite Coaxial Cable:     

                                                                           Consider a coaxial cable of inner radius ( a ) 
and outer radius ( b ) as shown in figure. For practice in using Gauss’s law, however, 
we will assume the charge on the inner conductor has a uniformly positive volume 
charge density of                       , and the outer conductor is grounded. Our task is to 
find the electric flux density everywhere.   
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(2). For the case at  ba  
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(3). For the case at  b

Since outer conductor is tied to ground, we know from Faraday’s experiment 

that the charge on this conductor is (-Q). Then the total net charge enclosed by 

this third Gaussian surface is therefore zero ( Qenc= zero) and hence:    
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Example: The volume in cylindrical coordinates between  

contains a uniform charge density   . Use Gauss’s law to find  

 in all region ? 

(1). For  m20  

: 
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Since there is no charges in this region 

Equating eq.(1) with (2) we get:   
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(2). For  m42  

Equation (1) is remain the same as in the first case, while the total charge 

enclosed is calculated as: 
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Equating eq.(1) with (4) we get:   
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(3). For  m4

Equation (1) is remain the same as in the first and second cases, while the total charge 

enclosed is calculated as: 
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Equating eq.(1) with (5) we get:   
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Q1/ Charge is distributed in the spherical region   with density:  

. What net flux crosses the surfaces,  ?  

Q
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Q2/ A point charge   is at the origin of spherical coordinate and a sphere shell charge distribution at  

 has a total charge of   , uniformly distributed. What flux crosses the surface   
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Q3/ Given that:   , find the flux crossing the portion of the                  -plane defined by  

. 
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Q5/ Given charge distribution with density   in spherical coordinates. Use Gauss’s law to find   

 ?  Ans.  
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Q4/ A uniform line charge with density   lies along the x-axis. Find   at:  

 . 
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Q6/ Given that:   , find the flux    crossing surfaces of area   

 normal to the x-axis and located at    ?    Ans.  
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Q7/ A point charge of    is at the center of spherical coordinate system. Find the flux  

 which crosses an area of    on a concentric spherical shell of radius   

. 
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Q8/ An area of    on the surface of spherical shell of radius   is crossed by   

 of flux in an inward direction. What point charge at the origin is indicated ?     Ans. 
. 


